by Jim Lane (Biofuels Digest) Yes, ARPA-E has unveiled its latest moonshot and is investing $22M in Macroalgae Research Inspiring Novel Energy Resources — also known as MARINER.
The projects that comprise ARPA-E’s Macroalgae Research Inspiring Novel Energy Resources (MARINER) program seek to develop the critical tools to allow the United States to grow into a world leader in the production of marine biomass. Presently, macroalgae, or seaweed, is primarily used directly as food for human consumption, but there is a growing opportunity for the production of seaweed for use as fuel, chemical feedstock, and animal feed.
MARINER project teams will develop technologies capable of providing economically viable, renewable biomass for energy applications that does not compete for valuable dry land.
These projects are divided into five categories:
1. Design & Experimental Deployment of Integrated Cultivation and Harvesting Systems
2. Design & Experimental Deployment of Advanced Component Technologies
3. Design & Testing of Computational Modeling Tools
4. Design & Testing of Aquatic Monitoring Tools
5. Research & Development of Advanced Breeding and Genetic Tools
...
The project winners
Catalina Sea Ranch – San Pedro, CA
Design of Large Scale Macroalgae Systems – $449,772
The Catalina Sea Ranch team will design an advanced cultivation system for giant kelp (Macrocystis) to reduce operational and capital costs for large-scale seaweed farms. In collaboration with its commercial partners, the team’s direct seeding method, which deposits young plants onto specially designed substrates, will save money and time during the hatchery and deployment phase. Additionally, the team’s mechanical partial harvest technology, which allows the same plant to be cut multiple times, is expected to further reduce seeding costs by 75% compared to the state of the art.
Fearless Fund – Washington, DC
Ocean Energy from Macroalgae (OEM): Ranching Sargassum – $500,000
The Fearless Fund team will develop a new system to enable large-scale seaweed “ranching” using remote sensing and imaging technologies to monitor free-floating, low-impact Sargassum cultivation designed to mimic naturally occurring seaweed mats found in nature. Free-floating farms decouple biomass production from costly, capital-intensive infrastructure and present opportunities to scale production in the Gulf of Mexico and Caribbean Sea. Working along the Texas/Louisiana coastline, the team will use satellite technology and computational modeling to seed, monitor, and harvest Sargassum biomass over a three-month cultivation cycle. By leveraging the wealth of data generated from a suite of sensors, the team seeks to achieve large- scale farming without the need for capital-intensive infrastructure.
Kampachi Farms, LLC – Kailua-Kona, HI
Blue Fields: Single Point Mooring Array for High-Yield Macroalgae Culture – $500,000
The Kampachi Farms team will develop technologies for the delivery of deep seawater nutrients to a novel macroalgae production farm design suitable for deployment in tropical and subtropical deep ocean environments. The nutrient delivery system will be powered by ocean-current-driven pumps, and the innovative single-point mooring array growth system will harness currents for optimal nutrient dispersal. Finally, the team seeks to demonstrate a prototype harvester that could be adapted to renewable power sources. All subsystems are intended to be deployed in Hawaii’s offshore environment to validate field performance.
Marine Biological Laboratory – Woods Hole, MA
Development of Techniques for Tropical Seaweed Cultivation – $500,000
The Marine Biological Laboratory team will focus on the development of a cultivation system for the tropical seaweed Eucheuma isiforme for the production of biomass for conversion to biofuels. Eucheuma is a commercially valuable species of “red” macroalgae that has been difficult to propagate in a cost-effective manner. The team seeks to develop a new farming system to mechanize seeding and harvesting processes to reduce labor intensity and enable deployment in offshore areas. The team’s test site in the waters around Puerto Rico aims to demonstrate cost-effective production in underutilized areas of the Gulf of Mexico and tropical areas of the U.S. exclusive economic zone, where year-round production is possible.
Pacific Northwest National Laboratory – Richland, WA
Nautical Offshore Macroalgal Autonomous Device (NOMAD) – $500,000
The Pacific Northwest National Laboratory team at the Marine Sciences Laboratory in Sequim, Washington, will develop a free-floating, carbon fiber seaweed longline to be released far offshore and collected after a six- month, 1,500km path along nutrient-rich ocean currents. The floating cultivation system, called NOMAD, does not require capital for anchors or moorings and will operate without direct human intervention. The recycled carbon fiber line will be equipped with GPS buoys to track position, while other sensors will be used to estimate harvest readiness in real time. Fully automated, high-speed seeding and harvesting machines will be designed and deployed to minimize labor costs. The team will use state-of-the-art hydrodynamic modeling for device design and placement.
Trophic, LLC – Albany, CA
Continuous, High-Yield Kelp Production – $500,000
The Trophic team will develop a suite of technologies to significantly increase the capital efficiency of seaweed farms to reduce production costs. Specifically, Trophic’s approach will use renewable energy to passively lift nutrients from deep ocean water to crops at the ocean surface, mimicking the natural upwelling that occurs in the world’s most productive marine ecosystems. The system will also employ a self-diving buoy system to help protect the farm from wave motion and an adjustable system to optimize exposure to sunlight and increase productivity. In tandem with new harvesting technologies, the team expects to design a cultivation system that can produce seaweed at a cost meeting the MARINER target.
University of Southern Mississippi – Hattiesburg, MS
AdjustaDepth – Adjustable Depth Seaweed Growth System – $500,000
The University of Southern Mississippi team will develop a novel and robust seaweed growth system capable of precise positioning for maximizing productivity and avoidance of surface hazards such as weather or marine traffic. The system is anticipated to be suitable for diverse “attached-growth” seaweeds and scalable across multiple temperate climate regions. The USM project team will also investigate the potential to integrate drone technology to develop a glider-based version of its system, capable of returning to its home port for harvesting when not roaming thousands of miles offshore.
University of Southern Mississippi – Hattiesburg, MS
SeaweedPaddock Pelagic Sargassum Ranching – $500,000
The University of Southern Mississippi team will develop a semi-autonomous enclosure to contain fields of free-floating Sargassum mats. Wave-powered tugs, operated remotely onshore by a single person, will move the enclosure to ensure maximum exposure to nutrients. The system is designed to never return to shore, while the pilot can relocate the enclosure to avoid storms and ships—or move it into “dead zones” where excessive nutrients can be taken up by the seaweed, improving ocean health.
University of Alaska Fairbanks – Fairbanks, AK
Development of Scalable Coastal & Offshore Macroalgal Farming – $500,000
The University of Alaska Fairbanks team will develop replicable scale model farms capable of the cost-effective production of sugar kelp, a type of seaweed. The UAF project aims to reduce capital cost using purpose-built designs while simplifying installation and production to lower operational expenses. The team seeks to integrate the entire farming process, including seed production, outplanting, grow-out, harvest, and re-seeding. A particular emphasis will be on the development of cost-effective harvesting methods based on technologies applied in the commercial fishing industry. Test deployments for the integrated system are planned for locations in Alaska and New England.
C.A. Goudey and Associates – Newburyport, MA
Autonomous Tow Vessels for Offshore Macroalgae Farming – $406,549
The C.A. Goudey and Associates team will develop an autonomous tow vessel to enable deployment of large- scale seaweed farming systems. This “drone tug” will operate energy-efficiently—at low speeds—to conduct critical farming tasks, such as relocating marine infrastructure and biomass transport to processing locations. Because the vessel is capable of piloting itself and therefore requires no crew, the drone tug presents an opportunity to efficiently scale up farming systems while moving them farther offshore, where human access would be significantly more challenging and costly.
Makai Ocean Engineering, Inc. – Honolulu, HI
Modeling the Performance and Impact of Macroalgae Farming – $995,978
The Makai Ocean Engineering team will develop a modeling tool to simulate the biology, nutrient flux, and structural performance of offshore seaweed farming systems. This work will result in a hydromechanical model that can simulate forces on offshore seaweed structures due to waves and currents. In addition, the team will develop tools to assess the flow and dispersion of nutrient-rich waters pumped to a farm site from the deep ocean. Several scenarios will be modeled for varying wave sizes, water depths, and currents. The model’s output will be used to determine the proper size for offshore components and to create cost estimates based on these components for a wide range of locations and farm designs.
Pacific Northwest National Laboratory – Richland, WA
Multi-resolution, Multi-scale Modeling for Scalable Macroalgae Production– $2,025,986
The Pacific Northwest National Laboratory team at the Marine Sciences Laboratory in Sequim, Washington, will develop a set of integrated modeling tools capable of simulating multiple factors simultaneously. The team will use the best available regional and global modeling products to understand macroalgae farm structure- hydrodynamics interactions, load response calculations, and nutrient flux to provide consistent and accurate simulations of seaweed growth and biomass yields. The effort will perform a hydrodynamic load analysis for different farm designs across different regions of U.S. coastal and open waters, which is expected to reduce the risk and cost of farm deployment.
University of California, Irvine – Irvine, CA
MacroAlgae Cultivation MODeling System (MACMODS) – $1,815,529
The University of California, Irvine team will develop a modeling system capable of capturing the complex interplay between ocean currents, surface waves, turbulence, farm canopy architecture, nutrient and light fields, and biological processes. UC Irvine’s modeling system will integrate an open-source regional ocean model with a fine-scale, high resolution hydrodynamic model, allowing the team to evaluate different farm designs to maximize yield while minimizing cost and environmental impact. The model is anticipated to provide critical information to enable seaweed producers to develop efficient structural components, cultivation techniques, and operational parameters for optimized overall performance and yields.
University of New England – Biddeford, ME
Validated, Finite Element Modeling Tool for Hydrodynamic Loading and Structural Analysis of Ocean- Deployed Farms – $1,321,039
The University of New England team will develop and validate a fine-tuned 3D modeling tool to simulate the hydrodynamic-induced mechanical stress of seaweed cultivation systems in high fidelity. The team will focus on predictive modeling to determine the structural performance of new and existing farm designs, complemented by a field plan to validate the model at multiple scales in the Gulf of Maine. The team’s model will be capable of simulating hectare-sized farms at resolutions of less than one meter, accelerating the engineering, testing, permitting, and operation of new seaweed farming systems.
University of California, Santa Barbara – Santa Barbara, CA
Scalable Aquaculture Monitoring System (SAMS) – $2,003,894
The University of California, Santa Barbara team will develop a system-level solution to continuously monitor all stages of seaweed biomass production and integrate data into real-time, actionable intelligence for farm operators. Specifically, the technology will reduce logistical requirements and cost through integration of autonomous aerial and submarine drones and permanent sensors. UCSB’s system provides a scalable capability to continuously assess physiological condition and production, as well as the environmental factors influencing the health and yield of the farm.
Woods Hole Oceanographic Institution – Woods Hole, MA
Integrated Monitoring of Macroalgae Farms Using Acoustics and UUV Sensing – $2,063,170
The Woods Hole Oceanographic Institution team will develop an autonomous underwater observation system for monitoring large-scale seaweed farms for extended periods without human intervention. The team will outfit an unmanned underwater vehicle (UUV) with acoustic, optical, and environmental sensors to monitor macroalgae growth and health, equipment status, and water column properties, such as nutrient content. A particular focus of the project is to collect and interpret acoustic (sonar) data of the macroalgae. A docking station for vehicle recharge and data telemetry makes long-term operation possible.
University of Wisconsin-Milwaukee – Milwaukee, WI
Genome-wide Association Studies for Breeding M. Pyrifera– $2,820,128
The University of Wisconsin-Milwaukee team will develop a breeding program focused on determining the ideal genetic traits for farmed seaweed at scale. The team will use a combination of genome sequencing, optical mapping, and capture sequencing to create a genotyped strain collection—enabling the selection of the best performing farming traits from 50,000 possible crosses. The team will produce a specific set of genetic markers for traits controlling biomass growth rate, and low nutrient as well as temperature tolerance. This information will serve as a valuable tool for breeders to guide effective plant selection.
Woods Hole Oceanographic Institution – Woods Hole, MA
Integrated Seaweed Hatchery and Selective Breeding Technologies for Scalable Offshore Seaweed Farming – $3,704,276
The Woods Hole Oceanographic Institution team will develop a selective breeding program for Saccharina, one of the most commercially important kelp varieties, with the goal of obtaining improved cost effectiveness of seaweed production. The breeding program will build a germplasm library associated with plants that produce a 20% to 30% improvement over plants currently in the field. By using a combination of phenotyping, genome- wide studies, and genome prediction methods, the team expects to accelerate the production of improved plants while decreasing the need for costly field evaluations. The project will conduct sampling and testing at field sites in New England and Alaska. READ MORE
Cultivating marine biomass (EurekAlert!/University of California Los Angeles)
Seaweed biofuel projects receive DOE funding (Biofuels International)
Two New Department of Energy Projects Want to Fuel Cars With Seaweed (Futurism)
More than 50,000 articles in our online library!
Use the categories and tags listed below to access the nearly 50,000 articles indexed on this website.
Advanced Biofuels USA Policy Statements and Handouts!
- For Kids: Carbon Cycle Puzzle Page
- Why Ethanol? Why E85?
- Just A Minute 3-5 Minute Educational Videos
- 30/30 Online Presentations
- “Disappearing” Carbon Tax for Non-Renewable Fuels
- What’s the Difference between Biodiesel and Renewable (Green) Diesel? 2020 revision
- How to De-Fossilize Your Fleet: Suggestions for Fleet Managers Working on Sustainability Programs
- New Engine Technologies Could Produce Similar Mileage for All Ethanol Fuel Mixtures
- Action Plan for a Sustainable Advanced Biofuel Economy
- The Interaction of the Clean Air Act, California’s CAA Waiver, Corporate Average Fuel Economy Standards, Renewable Fuel Standards and California’s Low Carbon Fuel Standard
- Latest Data on Fuel Mileage and GHG Benefits of E30
- What Can I Do?
Donate
DonateARCHIVES
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- June 2007
- February 2007
- January 2007
- October 2006
- April 2006
- January 2006
- April 2005
- December 2004
- November 2004
- December 1987
CATEGORIES
- About Us
- Advanced Biofuels Call to Action
- Aviation Fuel/Sustainable Aviation Fuel (SAF)
- BioChemicals/Renewable Chemicals
- BioRefineries/Renewable Fuel Production
- Business News/Analysis
- Cooking Fuel
- Education
- 30/30 Online Presentations
- Competitions, Contests
- Earth Day 2021
- Earth Day 2022
- Earth Day 2023
- Earth Day 2024
- Executive Training
- Featured Study Programs
- Instagram TikTok Short Videos
- Internships
- Just a Minute
- K-12 Activities
- Mechanics training
- Online Courses
- Podcasts
- Scholarships/Fellowships
- Teacher Resources
- Technical Training
- Technician Training
- University/College Programs
- Events
- Coming Events
- Completed Events
- More Coming Events
- Requests for Speakers, Presentations, Posters
- Requests for Speakers, Presentations, Posters Completed
- Webinars/Online
- Webinars/Online Completed; often available on-demand
- Federal Agency/Executive Branch
- Agency for International Development (USAID)
- Agriculture (USDA)
- Commerce Department
- Commodity Futures Trading Commission
- Congressional Budget Office
- Defense (DOD)
- Air Force
- Army
- DARPA (Defense Advance Research Projects Agency)
- Defense Logistics Agency
- Marines
- Navy
- Education Department
- Energy (DOE)
- Environmental Protection Agency
- Federal Energy Regulatory Commission (FERC)
- Federal Reserve System
- Federal Trade Commission
- Food and Drug Administration
- General Services Administration
- Government Accountability Office (GAO)
- Health and Human Services (HHS)
- Homeland Security
- Housing and Urban Development (HUD)
- Interior Department
- International Trade Commission
- Joint Office of Energy and Transportation
- Justice (DOJ)
- Labor Department
- National Academies of Sciences Engineering Medicine
- National Aeronautics and Space Administration
- National Oceanic and Atmospheric Administration
- National Research Council
- National Science Foundation
- National Transportation Safety Board (NTSB)
- Occupational Safety and Health Administration
- Overseas Private Investment Corporation
- Patent and Trademark Office
- Securities and Exchange Commission
- State Department
- Surface Transportation Board
- Transportation (DOT)
- Federal Aviation Administration
- National Highway Traffic Safety Administration (NHTSA)
- Pipeline and Hazardous Materials Safety Admin (PHMSA)
- Treasury Department
- U.S. Trade Representative (USTR)
- White House
- Federal Legislation
- Federal Litigation
- Federal Regulation
- Feedstocks
- Agriculture/Food Processing Residues nonfield crop
- Alcohol/Ethanol/Isobutanol
- Algae/Other Aquatic Organisms/Seaweed
- Atmosphere
- Carbon Dioxide (CO2)
- Field/Orchard/Plantation Crops/Residues
- Forestry/Wood/Residues/Waste
- hydrogen
- Manure
- Methane/Biogas
- methanol/bio-/renewable methanol
- Not Agriculture
- RFNBO (Renewable Fuels of Non-Biological Origin)
- Seawater
- Sugars
- water
- Funding/Financing/Investing
- grants
- Green Jobs
- Green Racing
- Health Concerns/Benefits
- Heating Oil/Fuel
- History of Advanced Biofuels
- Infrastructure
- Aggregation
- Biofuels Engine Design
- Biorefinery/Fuel Production Infrastructure
- Carbon Capture/Storage/Use
- certification
- Deliver Dispense
- Farming/Growing
- Precursors/Biointermediates
- Preprocessing
- Pretreatment
- Terminals Transport Pipelines
- International
- Abu Dhabi
- Afghanistan
- Africa
- Albania
- Algeria
- Angola
- Antarctica
- Argentina
- Armenia
- Aruba
- Asia
- Asia Pacific
- Australia
- Austria
- Azerbaijan
- Bahamas
- Bahrain
- Bangladesh
- Barbados
- Belarus
- Belgium
- Belize
- Benin
- Bermuda
- Bhutan
- Bolivia
- Bosnia and Herzegovina
- Botswana
- Brazil
- Brunei
- Bulgaria
- Burkina Faso
- Burundi
- Cambodia
- Cameroon
- Canada
- Caribbean
- Central African Republic
- Central America
- Chad
- Chile
- China
- Colombia
- Congo, Democratic Republic of
- Costa Rica
- Croatia
- Cuba
- Cyprus
- Czech Republic
- Denmark
- Dominican Republic
- Dubai
- Ecuador
- El Salvador
- Equatorial Guinea
- Eqypt
- Estonia
- Ethiopia
- European Union (EU)
- Fiji
- Finland
- France
- French Guiana
- Gabon
- Georgia
- Germany
- Ghana
- Global South
- Greece
- Greenland
- Guatemala
- Guinea
- Guyana
- Haiti
- Honduras
- Hong Kong
- Hungary
- Iceland
- India
- Indonesia
- Iran
- Iraq
- Ireland
- Israel
- Italy
- Ivory Coast
- Jamaica
- Japan
- Jersey
- Jordan
- Kazakhstan
- Kenya
- Korea
- Kosovo
- Kuwait
- Laos
- Latin America
- Latvia
- Lebanon
- Liberia
- Lithuania
- Luxembourg
- Macedonia
- Madagascar
- Malawi
- Malaysia
- Maldives
- Mali
- Malta
- Marshall Islands
- Mauritania
- Mauritius
- Mexico
- Middle East
- Monaco
- Mongolia
- Morocco
- Mozambique
- Myanmar/Burma
- Namibia
- Nepal
- Netherlands
- New Guinea
- New Zealand
- Nicaragua
- Niger
- Nigeria
- North Africa
- North Korea
- Northern Ireland
- Norway
- Oman
- Pakistan
- Panama
- Papua New Guinea
- Paraguay
- Peru
- Philippines
- Poland
- Portugal
- Qatar
- Romania
- Russia
- Rwanda
- Saudi Arabia
- Scotland
- Senegal
- Serbia
- Sierra Leone
- Singapore
- Slovakia
- Slovenia
- Solomon Islands
- South Africa
- South America
- South Korea
- South Sudan
- Southeast Asia
- Spain
- Sri Lanka
- Sudan
- Suriname
- Swaziland
- Sweden
- Switzerland
- Taiwan
- Tanzania
- Thailand
- Timor-Leste
- Togo
- Trinidad and Tobago
- Tunisia
- Turkey
- Uganda
- UK (United Kingdom)
- Ukraine
- United Arab Emirates UAE
- Uruguay
- Uzbekistan
- Vatican
- Venezuela
- Vietnam
- Wales
- Zambia
- Zanzibar
- Zimbabwe
- Marine/Boat Bio and Renewable Fuel/MGO/MDO/SMF
- Marketing/Market Forces and Sales
- Opinions
- Organizations
- Original Writing, Opinions Advanced Biofuels USA
- Policy
- Presentations
- Biofuels Digest Conferences
- DOE Conferences
- Bioeconomy 2017
- Bioenergy2015
- Biomass2008
- Biomass2009
- Biomass2010
- Biomass2011
- Biomass2012
- Biomass2013
- Biomass2014
- DOE Project Peer Review
- Other Conferences/Events
- R & D Focus
- Carbon Capture/Storage/Use
- Co-Products
- Feedstock
- Logistics
- Performance
- Process
- Vehicle/Engine/Motor/Aircraft/Boiler
- Yeast
- Railroad/Train/Locomotive Fuel
- Resources
- Books Web Sites etc
- Business
- Definition of Advanced Biofuels
- Find Stuff
- Government Resources
- Scientific Resources
- Technical Resources
- Tools/Decision-Making
- Rocket/Missile Fuel
- Sponsors
- States
- Alabama
- Alaska
- Arizona
- Arkansas
- California
- Colorado
- Connecticut
- Delaware
- Florida
- Georgia
- Hawai'i
- Idaho
- Illinois
- Indiana
- Iowa
- Kansas
- Kentucky
- Louisiana
- Maine
- Maryland
- Massachusetts
- Michigan
- Midwest
- Minnesota
- Mississippi
- Missouri
- Montana
- Native American tribal nation lands
- Nebraska
- Nevada
- New Hampshire
- New Jersey
- New Mexico
- New York
- North Carolina
- North Dakota
- Ohio
- Oklahoma
- Oregon
- Pennsylvania
- Puerto Rico
- Rhode Island
- South Carolina
- South Dakota
- Tennessee
- Texas
- Utah
- Vermont
- Virginia
- Washington
- Washington DC
- West Coast
- West Virginia
- Wisconsin
- Wyoming
- Sustainability
- Uncategorized
- What You Can Do
tags
© 2008-2023 Copyright Advanced BioFuels USA. All Rights reserved.
0 COMMENTS
Leave A Comment
Your Email Address wiil not be Published. Required Field Are marked*