How Synthetic Biology Can Help Build Sustainable Cities
by John Cumbers (Green Biz/SynBioBeta) Sustainability is in vogue, with businesses and cities jostling to improve their public image and produce goods and services using renewable sources. Yet cities exponentially swell and carbon emissions continue to increase. Global CO2 emissions rise nearly every year (about 36 billion tons in 2014), with the bulk of these derived from solid and liquid fuels.
Scientific and economic solutions to curtail these emissions have been proposed for decades, with some success along the way. But 21st century problems necessitate modern solutions, and businesses — the major contributors to carbon emissions — are not typically willing to promote sustainability at the cost of profits.
Fortunately, synthetic biology — an engineering approach to biology that creates and uses tools to design and build functions in cells — offers a means to implement sustainable manufacturing processes that can reduce costs while producing materials, fuels and chemicals that are superior to existing products on the market.
…
Industrial synthetic biology is already making a dent in the circular economy.
If cells can be engineered to convert carbon to fuels and medicine, so too can they be modified to convert waste products — such as those billions of tons produced annually — to do the same. But plausibility rarely translates to lasting results. Take the city of Chicago as an example.
In 2015, residents and activities in Chicago generated 32 million metric tons of carbon dioxide (PDF). Reducing these exorbitant emissions is no small feat, and it is unlikely that a single remedy will provide a full solution. But synthetic biology can, and already is, making cities such as Chicago more sustainable by converting carbon emissions to valuable materials.
LanzaTech is an industrial-level synthetic biology company that harnesses carbon waste and converts it to transportation fuel using engineered organisms. It opened its first industrial facility outside of Beijing last year, which collects emissions from a steel factory and generates more than 16 million gallons of ethanol per year. Soon, the company will expand to four additional facilities, reducing emissions comparable to removing hundreds of thousands of cars from the road each year.
Chemical giant DuPont is also actively shifting its R&D towards synthetic biology solutions that can mitigate pesky chemical manufacturing issues through its Industrial Biosciences division. It already operates large, active research programs to reduce food waste, produce fuels renewably and manufacture biomaterials with market-driven solutions using genetically engineered organisms. Earlier this year, DuPont began construction on a new European headquarters for its Industrial Biosciences division in the Netherlands, with the aim of expanding global impact.
…
Engineered E. coli have been used to produce human insulin since 1978 amid little public backlash, but there is no certainty that future medicines, clothing lines and fuels produced using synthetic biology will be so readily accepted.
While a circular economy has long been imagined, it only recently has become fully implementable. READ MORE