Greener Days Ahead for Carbon Fuels
by Theresa Duque (Berkeley Lab) Researchers discover copper has potential as a catalyst for turning carbon dioxide into sustainable chemicals and fuels without any wasteful byproducts, creating a green alternative to present-day chemical manufacturing — For decades, scientists have searched for effective ways to remove excess carbon dioxide emissions from the air, and recycle them into products such as renewable fuels. But the process of converting carbon dioxide into useful chemicals is tedious, expensive, and wasteful and thus not economically or environmentally viable.
Now a discovery by researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Joint Center for Artificial Photosynthesis (JCAP) shows that recycling carbon dioxide into valuable chemicals and fuels can be economical and efficient – all through a single copper catalyst.
The work appears in the Dec. 17 edition of the journal Nature Catalysis.
…
Ever since the 1980s, when copper’s talent for converting carbon into various useful products was discovered, it was always assumed that its active sites weren’t product-specific – in other words, you could use copper as a catalyst for making ethanol, ethylene, propanol, or some other carbon-based chemical, but you would have to go through a lot of steps to separate unwanted, residual chemicals formed during the intermediate stages of a chemical reaction before arriving at your final destination – the chemical end-product.
“The goal of ‘green’ or sustainable chemistry is getting the product that you want during chemical synthesis,” said (Joel) Ager. “You don’t want to separate things you don’t want from the desirable products, because that’s expensive and environmentally undesirable. And that expense and waste reduces the economic viability of carbon-based solar fuels.”
…
“What if, like photosynthesis in nature, we could use electrons from solar cells to drive specific active sites of a copper catalyst to make a pure product stream of a carbon-based fuel or chemical?” Ager said.
…
After (Yanwei) ran dozens of experiments and used state-of-the-art mass spectrometry and NMR (nuclear magnetic resonance) spectroscopy at JCAP to analyze the results, they found that three of the products – ethylene, ethanol, and propanol – had different isotopic signatures showing that they came from different sites on the catalyst. “This discovery motivates future work to isolate and identify these different sites,” Lum said. “Putting these product-specific sites into a single catalyst could one day result in a very efficient and selective generation of chemical products.” READ MORE