by Beth Burmahl (Argonne National Laboratory) Argonne collaborates with U.S. laboratories on research to identify promising biofuels for different engine types. -- Biofuel is closer to becoming a cost-competitive, climate-friendly solution for slashing carbon emissions in cars and trucks, according to two new studies.
The U.S. Department of Energy’s (DOE) Argonne National Laboratory collaborated with the DOE’s National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL) and Idaho National Laboratory (INL) on the research. Results showed that biofuel combined with advanced engine design can reduce greenhouse gas (GHG) emissions by roughly 60% while improving fuel efficiency or reducing tailpipe emissions.
Argonne energy system analyst Pahola Thathiana Benavides, NREL process engineer Andrew W. Bartling and PNNL engineer Steven Phillips were lead analysts for the two studies published in ACS Sustainable Chemistry & Engineering.
Biofuel has significant advantages over petroleum gasoline. But the engines themselves are also critical to energy efficiency. Designing low-carbon fuels and engines to work together can maximize energy use and vehicle performance.
“We are at the intersection of new innovations in both engines and biofuel,” said Troy Hawkins, Argonne’s group manager, fuels and products group, an author on both ACS Sustainable Chemistry & Engineering studies. ”Our goal was to develop new biofuels blended with conventional fuels to improve engine performance. This means a gasoline-powered car or truck could go further on the same amount of fuel. Or a diesel vehicle could meet more stringent emissions standards.”
In both studies, Argonne scientists worked with other national labs to identify promising fuels for different engine types. Researchers considered cost, environmental impact and potential for expanding to commercial markets.
The research is supported by the Co-Optimization of Fuels & Engines (Co-Optima) initiative jointly led by DOE’s Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office and Vehicle Technologies Office.
Argonne is part of Co-Optima’s consortium of nine national laboratories and over 20 university and industrial partners. The consortium studies how simultaneous innovations in fuel and engines can boost fuel economy and vehicle performance while reducing emissions.
Scientists and experts at every DOE laboratory played an important role in each phase of the research, Hawkins said.
“This research is a really good example of how laboratories can work together to help the DOE accomplish its mission,” Hawkins said.
Finding biofuel pathways
Co-Optima’s research builds on the goal to identify and understand bioblendstocks, or biofuel. Biofuel is produced from biomass — organic materials including plants, agricultural waste and wet waste. Biofuel can be blended with conventional fuel to reduce emissions and improve fuel and engine performance.
Collaborating with Co-Optima fuel experts, researchers used a screening process to develop a list of biofuels for their research, Benavides said.
Argonne scientists developed the list of biofuels working with experts including PNNL technical team manager and Co-Optima Leadership Team member Daniel Gaspar, NREL senior scientist Gina Fioroni, NREL senior research fellow Robert McCormick, and Anthe George, senior manager at DOE’s Sandia National Laboratories (SNL).
“We worked with other experts to use specific criteria to narrow many biofuel candidates down to a short list for our research. This list was developed based on the required properties and the engine’s combustion mode,” Benavides said.
Converting biomass to biofuel is a complex process involving variables in feedstock, conversion technologies and fuel types. It is especially challenging finding biofuel pathways that also meet economic, technology and energy goals.
One study was co-first-authored by Benavides. The team assessed 12 biofuel production pathways for optimizing multimode internal combustion engines. Multimode engines can deliver greater efficiency and cost savings by using different methods of ignition, combustion and/or fuel-preparation, depending on driving demands.
Researchers used renewable biomass feedstock found in forestry byproducts such as wood waste and agricultural byproducts such as corn stover. They used conversion technologies including either fermentation, catalysis under high heat and pressure, or a combination of both.
“We found that not only can seven biofuels be produced cost-competitively, but that these seven are varied in terms of feedstock used and conversion technology,” Bartling said. ”This means that biorefineries can be more flexible in choosing where and how to build their facilities.”
NREL and PNNL researchers did a techno-economic assessment of the biofuel production pathways, analyzing cost and technology performance.
“Our findings showed that many of the biofuels are competitive with the current cost of petroleum fuel,” Phillips said.
Researchers also analyzed environmental impact. A life cycle analysis of the pathways using Argonne’s GREET® (Greenhouse Gases, Regulated Emissions, and Energy used in Technologies) model showed impressive results. Ten biofuels have the potential to reduce GHG emissions by 60% compared to petroleum gasoline. The list includes alcohols, furan mixtures and olefins.
Biofuel promising for diesel engines
The second study was co-first-authored by Bartling. Researchers analyzed 25 pathways for producing biofuel optimized to improve combustion for mixing-controlled compression ignition engines. These are a type of diesel engine mainly used for freight transportation.
To develop biofuel production pathways, researchers used feedstocks ranging from plant materials such as wood chips or corn stover, to oils from soybean and cuphea, to wet wastes and recycled grease. They used conversion technologies including fermentation, gasification, and hydrothermal liquefaction.
“The diverse set of biomass resources available in the U.S. has great potential to replace a portion of fuels and chemicals that now come from petroleum,” said Damon Hartley, INL’s Operations Research and Analysis Group lead. ”However, one of the largest barriers is the wide variability in quality in the raw materials. This can have a large impact on how the material performs in conversion.”
As with the first study, most of the technologies performed well. Most of the biofuels were cost-competitive with current gas prices.
In terms of environmental impact, GHG emissions were reduced more than 60% in 12 of the 25 pathways, according to the GREET life cycle analysis.
“We evaluated the life cycle GHG emissions for each mixing-controlled compression ignition engine pathway. This included not only the tailpipe emissions but also upstream emissions resulting from biomass cultivation, feedstock transportation, biofuel production and biofuel distribution,” Hawkins said.
Creating a biofuel playbook
Researchers did not intend to produce a definitive list of biofuels, Benavides said. Instead, the studies offer a guide for stakeholders on selecting biofuel pathways that best meet their needs.
“We provide researchers and industry guidance on assessing biofuels based on a number of complex variables,” Benavides said. ”The life cycle and techno-economic analysis is important in guiding stakeholders as early as possible. We can’t tell stakeholders what choices to make. But these tools can point them in the right direction from the beginning.”
While many of these biofuel pathways could potentially be cost-competitive, it is too soon to lock in prices in a constantly fluctuating gas market. ”The challenge is providing cost-competitive prices in the long term,” Hawkins said.
While these biofuel production pathways target cars and diesel trucks, Argonne researchers are also studying the potential for using these pathways in hard-to-electrify sectors like aviation and maritime industries. The goal is to bring biofuel to market across a range of industries as quickly as possible.
“DOE is constantly working on sustainable solutions for decarbonizing the transportation sector. Biofuel is a big piece of that,” Hawkins said. ”We will continue to expand on Co-Optima’s important work.”
Along with Argonne, ORNL, NREL, PNNL, INL, and SNL, other U.S DOE national labs in the Co-Optima Initiative are Los Alamos, Lawrence Berkeley, and Lawrence Livermore national laboratories.
ACS Sustainable Chemistry & Engineering research authors:
“Identification of key drivers of cost and environmental impact for biomass-derived fuel for advanced multimode engines based on techno-economic and life cycle analysis”: Pahola Thathiana Benavides, Argonne, Andrew W. Bartling, NREL, Steven D. Phillips, PNNL, Troy R. Hawkins, Argonne, Avantika Singh, NREL, George G. Zaimes, Argonne, Matthew Wiatrowski, NREL, Kylee Harris, NREL, Pralhad H. Burli, INL, Damon Hartley, INL, Teresa Alleman, NREL, Gina Fioroni, NREL, Daniel Gaspar, PNNL.
“Environmental, economic, and scalability considerations of selected bio-derived blendstocks for mixing-controlled compression ignition engines”: Andrew W. Bartling, NREL, Pahola Thathiana Benavides, Argonne, Steven D. Phillips, PNL, Troy Hawkins, Argonne, Avantika Singh, NREL, Matthew Wiatrowski, NREL, Eric C. D. Tan, NREL, Christopher Kinchin, NREL, Longwen Ou, Argonne, Hao Cai, Argonne, Mary Biddy, NREL, Ling Tao, NREL, Andrew Young, NREL, Kathleen Brown, NREL, Shuyun Li, PNNL, Yunhua Zhu, PNNL, Lesley J. Snowden-Swan, PNNL, Chirag R. Mevawala, PNNL, Daniel J. Gaspar, PNNL.
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.
The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science. READ MORE
Environmental, Economic, and Scalability Considerations of Selected Bio-Derived Blendstocks for Mixing-Controlled Compression Ignition Engines (ACS Sustainable Chemistry & Engineering)
Identification of Key Drivers of Cost and Environmental Impact for Biomass-Derived Fuel for Advanced Multimode Engines Based on Techno-Economic and Life Cycle Analysis (ACS Sustainable Chemistry & Engineering)
Excerpt from ACS Sustainable Chemistry & Engineering: Economic and environmental favorability are vital considerations for the large-scale development and deployment of sustainable fuels. Here, we have conducted economic and sustainability analyses of pathways for producing bioblendstocks optimized for improved combustion for mixing-controlled compression ignition (MCCI) engines. We assessed 25 pathways for the production of target fuels from renewable feedstocks and conducted techno-economic analysis (TEA) and life cycle analysis (LCA) to determine which bioblendstock candidates are likely to be viable given a slate of 19 metrics evaluating technology readiness, economic viability, and environmental impacts ranking each metric as either favorable, neutral, unfavorable, or unknown across a range of screening criteria. Among the results, we found that the economic metrics were largely favorable for most of the bioblendstocks. Of the near-term baseline cases, eight pathways offered the potential of a minimum fuel selling price (MFSP) of less than $5/gallon of gasoline equivalent (GGE). In comparison, under future target case scenarios, there is potential for seven pathways to reduce their fuel selling price to less than $4/GGE. Biochemically-based pathways struggled to achieve favorable target case MFSP under the processing approach taken here, but further economic improvements could be achieved when lignin valorization is included. Most of the conversion technologies were determined to be robust in that they would be minimally affected by the feedstock specifications and variations. However, given the early stage of development for most of the pathways, blending behavior and testing for regulatory limits are key data gaps as knowledge of how many of these bioblendstocks will perform when blended with existing fuels and how much can be added while still meeting fuel property specifications is still being assessed. Twelve pathways showed significant reductions in life cycle greenhouse gas (GHG) emissions greater than 60%, and 15 showed favorable fossil energy use reductions compared to conventional diesel fuel. Energy-intensive processes and the use of GHG-intensive chemicals such as sodium hydroxide contribute significantly to GHG emissions. Results from these analyses enable researchers and industry to assess the potential viability of MCCI bioblendstocks. READ MORE
Excerpt from ACS Sustainable Chemistry & Engineering:Early stage research and development are needed to accelerate the introduction of advanced biofuel and engine technologies. Under the Co-Optima initiative, the U.S. Department of Energy is leveraging capabilities from its nine national laboratories and more than 35 university and industry partners including advanced computational tools, process design, data analysis, and economic and sustainability modeling tools to simultaneously design fuels and engines capable of running efficiently in an affordable, scalable, and sustainable way. In this work, we conducted techno-economic analysis (TEA) and life cycle assessment (LCA) to understand the cost, technology development, and environmental impacts of producing selected bioblendstocks for advanced engines such as multimode (MM) type engines at the commercial scale. We assessed 12 biofuel production pathways from renewable lignocellulosic biomass feedstocks using different conversion technologies (biochemical, thermochemical, or hybrid) to produce target co-optimized biofuels. TEA and LCA were used to evaluate 19 metrics across technology readiness, economic viability, and environmental impact and for each ranked on a set of criteria as favorable, neutral, unfavorable, or unknown. We found that most bioblendstocks presented in this study showed favorable economic metrics, while the technology readiness metrics were mostly neutral. The economic viability results showed potentially competitive target costs of less than $4 per gasoline gallon equivalent (GGE) for six candidates and less than $2.5/GGE for methanol. We identified 10 MM bioblendstock candidates with synergistic blending performance and with the potential to reduce greenhouse gas (GHG) emissions by 60% or more compared to petroleum-derived gasoline. The analysis presented here also provides insights into major economic and sustainability drivers of the production process and potential availability of the feedstocks for producing each MM bioblendstock. READ MORE
More than 50,000 articles in our online library!
Use the categories and tags listed below to access the nearly 50,000 articles indexed on this website.
Advanced Biofuels USA Policy Statements and Handouts!
- For Kids: Carbon Cycle Puzzle Page
- Why Ethanol? Why E85?
- Just A Minute 3-5 Minute Educational Videos
- 30/30 Online Presentations
- “Disappearing” Carbon Tax for Non-Renewable Fuels
- What’s the Difference between Biodiesel and Renewable (Green) Diesel? 2020 revision
- How to De-Fossilize Your Fleet: Suggestions for Fleet Managers Working on Sustainability Programs
- New Engine Technologies Could Produce Similar Mileage for All Ethanol Fuel Mixtures
- Action Plan for a Sustainable Advanced Biofuel Economy
- The Interaction of the Clean Air Act, California’s CAA Waiver, Corporate Average Fuel Economy Standards, Renewable Fuel Standards and California’s Low Carbon Fuel Standard
- Latest Data on Fuel Mileage and GHG Benefits of E30
- What Can I Do?
Donate
DonateARCHIVES
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- June 2007
- February 2007
- January 2007
- October 2006
- April 2006
- January 2006
- April 2005
- December 2004
- November 2004
- December 1987
CATEGORIES
- About Us
- Advanced Biofuels Call to Action
- Aviation Fuel/Sustainable Aviation Fuel (SAF)
- BioChemicals/Renewable Chemicals
- BioRefineries/Renewable Fuel Production
- Business News/Analysis
- Cooking Fuel
- Education
- 30/30 Online Presentations
- Competitions, Contests
- Earth Day 2021
- Earth Day 2022
- Earth Day 2023
- Earth Day 2024
- Executive Training
- Featured Study Programs
- Instagram TikTok Short Videos
- Internships
- Just a Minute
- K-12 Activities
- Mechanics training
- Online Courses
- Podcasts
- Scholarships/Fellowships
- Teacher Resources
- Technical Training
- Technician Training
- University/College Programs
- Events
- Coming Events
- Completed Events
- More Coming Events
- Requests for Speakers, Presentations, Posters
- Requests for Speakers, Presentations, Posters Completed
- Webinars/Online
- Webinars/Online Completed; often available on-demand
- Federal Agency/Executive Branch
- Agency for International Development (USAID)
- Agriculture (USDA)
- Commerce Department
- Commodity Futures Trading Commission
- Congressional Budget Office
- Defense (DOD)
- Air Force
- Army
- DARPA (Defense Advance Research Projects Agency)
- Defense Logistics Agency
- Marines
- Navy
- Education Department
- Energy (DOE)
- Environmental Protection Agency
- Federal Energy Regulatory Commission (FERC)
- Federal Reserve System
- Federal Trade Commission
- Food and Drug Administration
- General Services Administration
- Government Accountability Office (GAO)
- Health and Human Services (HHS)
- Homeland Security
- Housing and Urban Development (HUD)
- Interior Department
- International Trade Commission
- Joint Office of Energy and Transportation
- Justice (DOJ)
- Labor Department
- National Academy of Sciences
- National Aeronautics and Space Administration
- National Oceanic and Atmospheric Administration
- National Research Council
- National Science Foundation
- National Transportation Safety Board (NTSB)
- Occupational Safety and Health Administration
- Overseas Private Investment Corporation
- Patent and Trademark Office
- Securities and Exchange Commission
- State Department
- Surface Transportation Board
- Transportation (DOT)
- Federal Aviation Administration
- National Highway Traffic Safety Administration (NHTSA)
- Pipeline and Hazardous Materials Safety Admin (PHMSA)
- Treasury Department
- U.S. Trade Representative (USTR)
- White House
- Federal Legislation
- Federal Litigation
- Federal Regulation
- Feedstocks
- Agriculture/Food Processing Residues nonfield crop
- Alcohol/Ethanol/Isobutanol
- Algae/Other Aquatic Organisms/Seaweed
- Atmosphere
- Carbon Dioxide (CO2)
- Field/Orchard/Plantation Crops/Residues
- Forestry/Wood/Residues/Waste
- hydrogen
- Manure
- Methane/Biogas
- methanol/bio-/renewable methanol
- Not Agriculture
- RFNBO (Renewable Fuels of Non-Biological Origin)
- Seawater
- Sugars
- water
- Funding/Financing/Investing
- grants
- Green Jobs
- Green Racing
- Health Concerns/Benefits
- Heating Oil/Fuel
- History of Advanced Biofuels
- Infrastructure
- Aggregation
- Biofuels Engine Design
- Biorefinery/Fuel Production Infrastructure
- Carbon Capture/Storage/Use
- certification
- Deliver Dispense
- Farming/Growing
- Precursors/Biointermediates
- Preprocessing
- Pretreatment
- Terminals Transport Pipelines
- International
- Abu Dhabi
- Afghanistan
- Africa
- Albania
- Algeria
- Angola
- Antarctica
- Argentina
- Armenia
- Aruba
- Asia
- Asia Pacific
- Australia
- Austria
- Azerbaijan
- Bahamas
- Bahrain
- Bangladesh
- Barbados
- Belarus
- Belgium
- Beliz
- Benin
- Bermuda
- Bhutan
- Bolivia
- Bosnia and Herzegovina
- Botswana
- Brazil
- Brunei
- Bulgaria
- Burkina Faso
- Burundi
- Cambodia
- Cameroon
- Canada
- Caribbean
- Central African Republic
- Central America
- Chad
- Chile
- China
- Colombia
- Congo, Democratic Republic of
- Costa Rica
- Croatia
- Cuba
- Cyprus
- Czech Republic
- Denmark
- Dominican Republic
- Dubai
- Ecuador
- El Salvador
- Equatorial Guinea
- Eqypt
- Estonia
- Ethiopia
- European Union (EU)
- Fiji
- Finland
- France
- French Guiana
- Gabon
- Georgia
- Germany
- Ghana
- Global South
- Greece
- Greenland
- Guatemala
- Guinea
- Guyana
- Haiti
- Honduras
- Hong Kong
- Hungary
- Iceland
- India
- Indonesia
- Iran
- Iraq
- Ireland
- Israel
- Italy
- Ivory Coast
- Jamaica
- Japan
- Jersey
- Jordan
- Kazakhstan
- Kenya
- Korea
- Kosovo
- Kuwait
- Laos
- Latin America
- Latvia
- Lebanon
- Liberia
- Lithuania
- Luxembourg
- Macedonia
- Madagascar
- Malawi
- Malaysia
- Maldives
- Mali
- Malta
- Marshall Islands
- Mauritania
- Mauritius
- Mexico
- Middle East
- Monaco
- Mongolia
- Morocco
- Mozambique
- Myanmar/Burma
- Namibia
- Nepal
- Netherlands
- New Guinea
- New Zealand
- Nicaragua
- Niger
- Nigeria
- North Africa
- North Korea
- Northern Ireland
- Norway
- Oman
- Pakistan
- Panama
- Papua New Guinea
- Paraguay
- Peru
- Philippines
- Poland
- Portugal
- Qatar
- Romania
- Russia
- Rwanda
- Saudi Arabia
- Scotland
- Senegal
- Serbia
- Sierra Leone
- Singapore
- Slovakia
- Slovenia
- Solomon Islands
- South Africa
- South America
- South Korea
- South Sudan
- Southeast Asia
- Spain
- Sri Lanka
- Sudan
- Suriname
- Swaziland
- Sweden
- Switzerland
- Taiwan
- Tanzania
- Thailand
- Timor-Leste
- Togo
- Trinidad and Tobago
- Tunisia
- Turkey
- Uganda
- UK (United Kingdom)
- Ukraine
- United Arab Emirates UAE
- Uruguay
- Uzbekistan
- Vatican
- Venezuela
- Vietnam
- Wales
- Zambia
- Zanzibar
- Zimbabwe
- Marine/Boat Bio and Renewable Fuel/MGO/MDO/SMF
- Marketing/Market Forces and Sales
- Opinions
- Organizations
- Original Writing, Opinions Advanced Biofuels USA
- Policy
- Presentations
- Biofuels Digest Conferences
- DOE Conferences
- Bioeconomy 2017
- Bioenergy2015
- Biomass2008
- Biomass2009
- Biomass2010
- Biomass2011
- Biomass2012
- Biomass2013
- Biomass2014
- DOE Project Peer Review
- Other Conferences/Events
- R & D Focus
- Carbon Capture/Storage/Use
- Co-Products
- Feedstock
- Logistics
- Performance
- Process
- Vehicle/Engine/Motor/Aircraft/Boiler
- Yeast
- Railroad/Train/Locomotive Fuel
- Resources
- Books Web Sites etc
- Business
- Definition of Advanced Biofuels
- Find Stuff
- Government Resources
- Scientific Resources
- Technical Resources
- Tools/Decision-Making
- Rocket/Missile Fuel
- Sponsors
- States
- Alabama
- Alaska
- Arizona
- Arkansas
- California
- Colorado
- Connecticut
- Delaware
- Florida
- Georgia
- Hawai'i
- Idaho
- Illinois
- Indiana
- Iowa
- Kansas
- Kentucky
- Louisiana
- Maine
- Maryland
- Massachusetts
- Michigan
- Midwest
- Minnesota
- Mississippi
- Missouri
- Montana
- Native American tribal nation lands
- Nebraska
- Nevada
- New Hampshire
- New Jersey
- New Mexico
- New York
- North Carolina
- North Dakota
- Ohio
- Oklahoma
- Oregon
- Pennsylvania
- Puerto Rico
- Rhode Island
- South Carolina
- South Dakota
- Tennessee
- Texas
- Utah
- Vermont
- Virginia
- Washington
- Washington DC
- West Coast
- West Virginia
- Wisconsin
- Wyoming
- Sustainability
- Uncategorized
- What You Can Do
tags
© 2008-2023 Copyright Advanced BioFuels USA. All Rights reserved.
Comments are closed.