by Jim Nebergall (Cummins) ... (B)oth hydrogen engines and hydrogen fuel cells are receiving an increasing interest. Given medium and heavy-duty trucks are a major source of CO2 emissions, the transportation sector’s journey to destination zero features both technologies.
As more truck makers join the ranks of auto companies developing CO2-free or CO2-neutral alternative to gasoline and diesel vehicles, let’s look at the similarities and differences between hydrogen engines and fuel cells.
Hydrogen engines and fuel cells: Similarities and differences in how they work?
Both hydrogen internal combustion engines and hydrogen fuel cells can power vehicles using hydrogen, a zero-carbon fuel.
Hydrogen engines burn hydrogen in an internal combustion engine, in just the same way gasoline is used in an engine. Hydrogen internal combustion engines (Hydrogen ICE) are nearly identical to traditional spark-ignition engines. You can read more about how hydrogen engines work if interested.
Fuel cell hydrogen vehicles (FCEVs) generate electricity from hydrogen in a device known as a fuel cell, and use that electricity in an electric motor much like an electric vehicle.
Hydrogen engines and fuel cells: Complementary use-cases
Hydrogen engines and hydrogen fuel cells offer complementary use cases.
Internal combustion engines tend to be most efficient under high load—which is to say, when they work harder. FCEVs, in contrast, are most efficient at lower loads. You can read more examples of hydrogen engines in mobility and transportation. These range from heavy-duty trucking to construction.
So, for heavy trucks that tend to spend most of their time hauling the biggest load they can pull, internal combustion engines are usually the ideal and efficient choice. On the other hand, vehicles that frequently operate without any load—tow trucks or concrete mixer trucks, for example, may be more efficient with a fuel cell. Fuel cell electric vehicles can also capture energy through regenerative braking in very transient duty cycles, improving their overall efficiency.
Hydrogen engines can also operate as standalone powertrain solutions and handle transient response demand without the need for a battery pack. Fuel cells combined with battery packs can also accomplish the same.
...
Hydrogen engines and fuel cells: Similarities in emissions
Hydrogen engines and hydrogen fuel cells also have similar emissions profiles.
FCEVs, actually, produce no emissions at all besides water vapor. This is a very attractive feature for vehicles operating in closed spaces or spaces with limited ventilation.
Hydrogen engines release near zero, trace amounts of CO2 (from ambient air and lubrication oil), but can produce nitrogen oxides, or NOx. As a result, they are not ideal for indoor use and require exhaust aftertreatments to reduce NOx emissions.
Hydrogen engines and fuel cells: Hydrogen fuel considerations
Yes, both hydrogen engines and fuel cells use hydrogen fuel; but there is more to this story.
Hydrogen engines often are able to operate with lower grade hydrogen. This becomes handy for specific use cases. For example, you might have a site where hydrogen can be produced on site using steam methane reforming and carbon capture and storing (CCS). This hydrogen then can be used in hydrogen engines without the need for purification.
The hydrogen engine’s robustness to impurities is also handy for a transportation industry where the transition to high quality green hydrogen will take time.
Hydrogen engines and fuel cells: Varying maturity levels
Finally, hydrogen engines and hydrogen fuel cell technologies have different levels of maturity.
Internal combustion engines have been universally used for decades and are supported by extensive service networks. Rugged engines that can operate in dusty environments or that can be subjected to heavy vibrations are available in all sizes and configurations.
From the perspective of vehicle manufacturers and fleet operators, the switch to hydrogen engine drivetrains involves familiar parts and technology. Risk-averse end-users will find comfort in the tried-and-tested, reliable nature of internal combustion engines.
So it is not really the case that FCEVs and hydrogen ICEs are competing with one another. On the contrary, the development of one supports that of the other, since both drive the development of a common hydrogen production, transportation, and distribution infrastructure. Both also involve the same vehicle storage tanks. They are complementary technologies that are part of reducing vehicle and transportation emissions towards destination zero, now. READ MORE
Four-stroke hydrogen internal combustion engines (Hydrogen ICE) operate on the same cycle as regular natural gas engines and have almost the same components—engine block, crank, cylinder heads, ignition system, installation parts, and so on.
Diesel engines and hydrogen engines also share similar components. These include an engine block, crank, and installation parts such as mounts and flywheel housings.
At Cummins Inc., we are leveraging our existing platforms and expertise in spark ignited technology to build hydrogen engines. Our hydrogen engine is a spark ignited engine variant with similar engine hardware to natural gas and gasoline engines.
...
For example, differences in the physical properties of hydrogen impacts how fuel and air are metered and injected. Pre-ignition is a greater problem for hydrogen engines than for gasoline engines, because hydrogen is much easier to ignite. Direct injection is one way to overcome pre-ignition issues. Direct injection systems introduce fuel–hydrogen, in this case –directly into the cylinders, rather than into the intake manifold or ports. If the injection takes place at a time when the inlet valve is closed, backfire conditions are avoided. Another solution is to completely design the combustion system for hydrogen.
Another consideration is the formation of nitrogen oxides, or NOx. NOx is an atmospheric pollutant which can cause poor air quality and lead to the brown-orange haze that forms above some large cities in the summer.
When hydrogen burns in the presence of lots of oxygen, very little NOx is formed. However, when hydrogen burns with air fuel ratios that are near stoichiometric, a significant amount of NOx can be created. As a result, hydrogen engines are typically tuned to run lean with an excess air ratio of 2 or greater. This means that approximately twice as much air needs to be supplied to the cylinders than for a stoichiometric engine. Hydrogen engines often require an exhaust treatment system to remove this excess NOx.
...
Hydrogen engines look, sound and work like the internal combustion engines that every mechanic in the world is used to. Their reliability and durability are equal to that of diesel engines.
Cummins is currently testing hydrogen engines to mitigate the risks of hydrogen embrittlement and erosion. We will share our findings as our tests progress.
...
So, you might not know immediately that a vehicle is designed for hydrogen if you saw its engine, but if you saw its fuel tank, you would know right away. Storing hydrogen onboard motor vehicles is safe and becoming more economical and practical. Cummins has recently formed a joint venture with NPROXX, a leader in hydrogen storage and transportation for hydrogen storage tanks. This joint venture will provide customers with hydrogen and compressed natural gas storage products for both on-highway and rail applications. READ MORE
Excerpt from Advanced Clean Tech News/Westport Fuel Systems: There are many similarities between the internal combustion engine running diesel and the hydrogen ICE, making them a comfortable transition for OEMs and fleets alike.
- An internal combustion engine burns hydrogen in much the same way it burns diesel
- The range and refueling times are comparable
- The ICE performs best at consistent high loads with either diesel or hydrogen making it the ideal solution for long-haul applications
- Diesel and hydrogen engines share similar componentry creating scale benefits
The above outlines the viability of transitioning to hydrogen ICE from an operational and economic standpoint. Other key motivators include that for OEMs, hydrogen engines offer ease of adaptability in heavy-duty applications by utilizing existing vehicle architectures. For fleets, they are a known technology in operation, troubleshooting, maintenance, servicing and drivability, all offering a high level of familiarity. Moreover, for both OEMs and fleets, the existing and established ICE supply chain can be leveraged efficiently.
By leveraging existing technologies and supply chains, the commercial transportation industry at large can take comfort that the time-tested, reliable ICE can live on with new fuel and new purpose.
Big Solution. Small Change.
H2 HPDI, or High Pressure Direct Injection, provides complete injector “tip-to-tank” OEM solutions that allow the same internal combustion engines that are in fleets now, the ability to shift the system to run on hydrogen instead of diesel. The system, when fueled with hydrogen, offers more power and torque than diesel while dramatically reducing emissions. Westport’s H2 HPDI fuel system provides the following benefits:
- Up to 20% more power than diesel
- Up to 18% more torque than diesel
- Near zero CO2 emissions
- Preserves existing diesel engine architecture
- Preserves existing engine manufacturing infrastructure and investment
- Lowest cost to achieve CO2 compliance
H2 HPDI is the most cost-effective way to reduce CO2 emissions in long-haul trucking and other high-load long-haul applications. The system can utilize existing manufacturing infrastructure, with reduced capital investments, thus expediting time to market. The rapid scaling of production means H2 HPDI can quickly be deployed, further stimulating the demand for hydrogen and accelerating the reduction of cumulative GHG emissions.
Westport Fuel Systems is a leading supplier of advanced fuel delivery components and systems for clean, low-carbon fuels such as natural gas, renewable natural gas, propane, and hydrogen to the global transportation industry. To learn more about our technologies, visit www.westport.com. READ MORE
More than 50,000 articles in our online library!
Use the categories and tags listed below to access the nearly 50,000 articles indexed on this website.
Advanced Biofuels USA Policy Statements and Handouts!
- For Kids: Carbon Cycle Puzzle Page
- Why Ethanol? Why E85?
- Just A Minute 3-5 Minute Educational Videos
- 30/30 Online Presentations
- “Disappearing” Carbon Tax for Non-Renewable Fuels
- What’s the Difference between Biodiesel and Renewable (Green) Diesel? 2020 revision
- How to De-Fossilize Your Fleet: Suggestions for Fleet Managers Working on Sustainability Programs
- New Engine Technologies Could Produce Similar Mileage for All Ethanol Fuel Mixtures
- Action Plan for a Sustainable Advanced Biofuel Economy
- The Interaction of the Clean Air Act, California’s CAA Waiver, Corporate Average Fuel Economy Standards, Renewable Fuel Standards and California’s Low Carbon Fuel Standard
- Latest Data on Fuel Mileage and GHG Benefits of E30
- What Can I Do?
Donate
DonateARCHIVES
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- June 2007
- February 2007
- January 2007
- October 2006
- April 2006
- January 2006
- April 2005
- December 2004
- November 2004
- December 1987
CATEGORIES
- About Us
- Advanced Biofuels Call to Action
- Aviation Fuel/Sustainable Aviation Fuel (SAF)
- BioChemicals/Renewable Chemicals
- BioRefineries/Renewable Fuel Production
- Business News/Analysis
- Cooking Fuel
- Education
- 30/30 Online Presentations
- Competitions, Contests
- Earth Day 2021
- Earth Day 2022
- Earth Day 2023
- Earth Day 2024
- Executive Training
- Featured Study Programs
- Instagram TikTok Short Videos
- Internships
- Just a Minute
- K-12 Activities
- Mechanics training
- Online Courses
- Podcasts
- Scholarships/Fellowships
- Teacher Resources
- Technical Training
- Technician Training
- University/College Programs
- Events
- Coming Events
- Completed Events
- More Coming Events
- Requests for Speakers, Presentations, Posters
- Requests for Speakers, Presentations, Posters Completed
- Webinars/Online
- Webinars/Online Completed; often available on-demand
- Federal Agency/Executive Branch
- Agency for International Development (USAID)
- Agriculture (USDA)
- Commerce Department
- Commodity Futures Trading Commission
- Congressional Budget Office
- Defense (DOD)
- Air Force
- Army
- DARPA (Defense Advance Research Projects Agency)
- Defense Logistics Agency
- Marines
- Navy
- Education Department
- Energy (DOE)
- Environmental Protection Agency
- Federal Energy Regulatory Commission (FERC)
- Federal Reserve System
- Federal Trade Commission
- Food and Drug Administration
- General Services Administration
- Government Accountability Office (GAO)
- Health and Human Services (HHS)
- Homeland Security
- Housing and Urban Development (HUD)
- Interior Department
- International Trade Commission
- Joint Office of Energy and Transportation
- Justice (DOJ)
- Labor Department
- National Academies of Sciences Engineering Medicine
- National Aeronautics and Space Administration
- National Oceanic and Atmospheric Administration
- National Research Council
- National Science Foundation
- National Transportation Safety Board (NTSB)
- Occupational Safety and Health Administration
- Overseas Private Investment Corporation
- Patent and Trademark Office
- Securities and Exchange Commission
- State Department
- Surface Transportation Board
- Transportation (DOT)
- Federal Aviation Administration
- National Highway Traffic Safety Administration (NHTSA)
- Pipeline and Hazardous Materials Safety Admin (PHMSA)
- Treasury Department
- U.S. Trade Representative (USTR)
- White House
- Federal Legislation
- Federal Litigation
- Federal Regulation
- Feedstocks
- Agriculture/Food Processing Residues nonfield crop
- Alcohol/Ethanol/Isobutanol
- Algae/Other Aquatic Organisms/Seaweed
- Atmosphere
- Carbon Dioxide (CO2)
- Field/Orchard/Plantation Crops/Residues
- Forestry/Wood/Residues/Waste
- hydrogen
- Manure
- Methane/Biogas
- methanol/bio-/renewable methanol
- Not Agriculture
- RFNBO (Renewable Fuels of Non-Biological Origin)
- Seawater
- Sugars
- water
- Funding/Financing/Investing
- grants
- Green Jobs
- Green Racing
- Health Concerns/Benefits
- Heating Oil/Fuel
- History of Advanced Biofuels
- Infrastructure
- Aggregation
- Biofuels Engine Design
- Biorefinery/Fuel Production Infrastructure
- Carbon Capture/Storage/Use
- certification
- Deliver Dispense
- Farming/Growing
- Precursors/Biointermediates
- Preprocessing
- Pretreatment
- Terminals Transport Pipelines
- International
- Abu Dhabi
- Afghanistan
- Africa
- Albania
- Algeria
- Angola
- Antarctica
- Argentina
- Armenia
- Aruba
- Asia
- Asia Pacific
- Australia
- Austria
- Azerbaijan
- Bahamas
- Bahrain
- Bangladesh
- Barbados
- Belarus
- Belgium
- Belize
- Benin
- Bermuda
- Bhutan
- Bolivia
- Bosnia and Herzegovina
- Botswana
- Brazil
- Brunei
- Bulgaria
- Burkina Faso
- Burundi
- Cambodia
- Cameroon
- Canada
- Caribbean
- Central African Republic
- Central America
- Chad
- Chile
- China
- Colombia
- Congo, Democratic Republic of
- Costa Rica
- Croatia
- Cuba
- Cyprus
- Czech Republic
- Denmark
- Dominican Republic
- Dubai
- Ecuador
- El Salvador
- Equatorial Guinea
- Eqypt
- Estonia
- Ethiopia
- European Union (EU)
- Fiji
- Finland
- France
- French Guiana
- Gabon
- Georgia
- Germany
- Ghana
- Global South
- Greece
- Greenland
- Guatemala
- Guinea
- Guyana
- Haiti
- Honduras
- Hong Kong
- Hungary
- Iceland
- India
- Indonesia
- Iran
- Iraq
- Ireland
- Israel
- Italy
- Ivory Coast
- Jamaica
- Japan
- Jersey
- Jordan
- Kazakhstan
- Kenya
- Korea
- Kosovo
- Kuwait
- Laos
- Latin America
- Latvia
- Lebanon
- Liberia
- Lithuania
- Luxembourg
- Macedonia
- Madagascar
- Malawi
- Malaysia
- Maldives
- Mali
- Malta
- Marshall Islands
- Mauritania
- Mauritius
- Mexico
- Middle East
- Monaco
- Mongolia
- Morocco
- Mozambique
- Myanmar/Burma
- Namibia
- Nepal
- Netherlands
- New Guinea
- New Zealand
- Nicaragua
- Niger
- Nigeria
- North Africa
- North Korea
- Northern Ireland
- Norway
- Oman
- Pakistan
- Panama
- Papua New Guinea
- Paraguay
- Peru
- Philippines
- Poland
- Portugal
- Qatar
- Romania
- Russia
- Rwanda
- Saudi Arabia
- Scotland
- Senegal
- Serbia
- Sierra Leone
- Singapore
- Slovakia
- Slovenia
- Solomon Islands
- South Africa
- South America
- South Korea
- South Sudan
- Southeast Asia
- Spain
- Sri Lanka
- Sudan
- Suriname
- Swaziland
- Sweden
- Switzerland
- Taiwan
- Tanzania
- Thailand
- Timor-Leste
- Togo
- Trinidad and Tobago
- Tunisia
- Turkey
- Uganda
- UK (United Kingdom)
- Ukraine
- United Arab Emirates UAE
- Uruguay
- Uzbekistan
- Vatican
- Venezuela
- Vietnam
- Wales
- Zambia
- Zanzibar
- Zimbabwe
- Marine/Boat Bio and Renewable Fuel/MGO/MDO/SMF
- Marketing/Market Forces and Sales
- Opinions
- Organizations
- Original Writing, Opinions Advanced Biofuels USA
- Policy
- Presentations
- Biofuels Digest Conferences
- DOE Conferences
- Bioeconomy 2017
- Bioenergy2015
- Biomass2008
- Biomass2009
- Biomass2010
- Biomass2011
- Biomass2012
- Biomass2013
- Biomass2014
- DOE Project Peer Review
- Other Conferences/Events
- R & D Focus
- Carbon Capture/Storage/Use
- Co-Products
- Feedstock
- Logistics
- Performance
- Process
- Vehicle/Engine/Motor/Aircraft/Boiler
- Yeast
- Railroad/Train/Locomotive Fuel
- Resources
- Books Web Sites etc
- Business
- Definition of Advanced Biofuels
- Find Stuff
- Government Resources
- Scientific Resources
- Technical Resources
- Tools/Decision-Making
- Rocket/Missile Fuel
- Sponsors
- States
- Alabama
- Alaska
- Arizona
- Arkansas
- California
- Colorado
- Connecticut
- Delaware
- Florida
- Georgia
- Hawai'i
- Idaho
- Illinois
- Indiana
- Iowa
- Kansas
- Kentucky
- Louisiana
- Maine
- Maryland
- Massachusetts
- Michigan
- Midwest
- Minnesota
- Mississippi
- Missouri
- Montana
- Native American tribal nation lands
- Nebraska
- Nevada
- New Hampshire
- New Jersey
- New Mexico
- New York
- North Carolina
- North Dakota
- Ohio
- Oklahoma
- Oregon
- Pennsylvania
- Puerto Rico
- Rhode Island
- South Carolina
- South Dakota
- Tennessee
- Texas
- Utah
- Vermont
- Virginia
- Washington
- Washington DC
- West Coast
- West Virginia
- Wisconsin
- Wyoming
- Sustainability
- Uncategorized
- What You Can Do
tags
© 2008-2023 Copyright Advanced BioFuels USA. All Rights reserved.
Comments are closed.