Guest Post: The State of ‘Carbon Dioxide Removal’ in Seven Charts
by Steven Smith, Jan Minx, Greg Nemet and Oliver Geden (Carbon Brief) Taking CO2 out of the air – a practice known as carbon dioxide removal (CDR) – is increasingly recognised as a crucial part of achieving climate goals, alongside rapidly reducing emissions.
Yet, some basic questions remain unanswered: How much is already happening around the world? How fast is it growing? Are we on track to deliver what may be needed?
In a new report, released today, we endeavour to answer these questions and help make information on CDR more accessible.
For the first time, we are able to estimate the total amount of CDR currently being deployed around the world and compare it to what is in modelled pathways that meet the Paris climate goals.
We find a gap between how much CDR countries are planning in the coming decades and what is required to limit warming to 1.5C or 2C above pre-industrial levels. But alongside this “gap”, we also find rapid growth in innovation, academic research and public attention on CDR.
Below, we explain – via seven charts – what light the report sheds on the current state of CDR:
- Virtually all CDR happening now comes from managed forests.
- All pathways that meet global climate goals involve additional CDR.
- There is a gap between how much CDR countries are planning and what is needed to meet the Paris temperature goal.
- CDR research is concentrated on particular methods and regions.
- Innovation in CDR is active and growing.
- Public awareness is low, but CDR is becoming more of a talking point.
- The coming decade is crucial for future CDR.
Virtually all CDR happening now comes from managed forests
CDR, sometimes also referred to as “negative emissions”, refers to a number of different activities by which CO2 is captured from the air and stored durably on land, in the ocean, in geological formations or in products.
We estimate that the amount of CDR currently happening around the world is approximately 2bn tonnes of CO2 (GtCO2) per year. This is small relative to current CO2 emissions of 36.6GtCO2 per year from fossil fuels and cement, but perhaps larger than many might expect.
The vast majority of current CDR (99.9%) comes from what we, in this report, term “conventional CDR on land”. This includes the creation of new forests, restoration of previously deforested areas, increases in soil carbon and use of durable wood products, such as panels and sawnwood used in construction.
Only a small amount of current CDR, an additional 0.0023GtCO2 per year, comes from “novel” CDR methods. These include bioenergy with carbon capture and storage (BECCS), biochar, direct air carbon capture and storage (DACCS), enhanced rock weathering and coastal wetland (sometimes called “blue carbon”) management.
While novel CDR projects often get the news coverage, they collectively account for just 0.1% of all current CDR deployment.
In general, conventional CDR methods on land are already practised at scale. Done well, they can provide additional benefits, notably to biodiversity. But they are limited by available land, and the carbon removed by trees and soils is prone to reversal from disturbances and from climate change itself. READ MORE
Smith, S. M. et al. (2023). The State of Carbon Dioxide Removal – 1st Edition. Available at: www.stateofcdr.org.
Global carbon dioxide removal totals 2 billion tonnes per year – report (Reuters)
The State of Carbon Dioxide Removal (Science Media Center)
Discover the first comprehensive global assessment of the current state of Carbon Dioxide Removal. (The State of Carbon Dioxide Removal)
Occidental delays landmark CO2 removal project — The company is planning to build the world’s largest plant to suck carbon dioxide out of the air. (Politico Energywire)
Excerpt from Reuters: It estimates that roughly 1,300 times more carbon dioxide removal from new technologies — and twice as much from trees and soils — are needed by 2050 to limit temperatures to well below 2 degrees Celsius above pre-industrial temperatures, as set out in the Paris Agreement. READ MORE