(Chulalongkorn University/PR Newswire) Researchers from Chulalongkorn University have made use of forage grass to feed microorganisms and convert the resulting fat into jet fuel. They aim to expand petroleum-based oil replacement production to reduce impacts on human health and the environment. -- Yeast is a microorganism that is an important ingredient in many foods and beverages. However, in the future, yeast will play a major role in the production of fossil-based renewable fuels.
Currently, researchers from Chulalongkorn University's Faculty of Science are accelerating their technological development to scale up the production of aviation biofuel from yeast. This is an extension of the successful results of research that found a strain of yeast with a high potential for producing fat for use in aviation fuel. In addition to producing yeast oil, they use agricultural waste as food to grow microorganisms. This is another way to reduce burning problems and increase the value of agricultural waste.
How did the research originate?
Petroleum is an important source of fuel in today's world, both in various industrial sectors and in transportation, especially the aircraft industry.
A report from the Department of Energy Business of the Ministry of Energy (2019) stated that Thailand's jet fuel import volume has increased significantly. In 2016, Thailand imported 84.9 million liters of jet fuel, but only four years later, in 2019, the amount of jet fuel imports soared to 376.3 million liters per year.
This increase in fuel imports reflects growing industrial demand and the need to find innovations to produce alternative energy that is more friendly to human health and the environment than petroleum.
The team led by Prof. Dr. Warawut Chulalaksananukul and Asst. Prof. Dr. Chompunuch Glinwong from the Department of Botany, Faculty of Science, Chulalongkorn University has carried out the "Development of scaling-up technology for production of microbial lipid for biojet fuel synthesis" research project.
According to Prof. Dr. Warawut, "The team has been successful in the separation of Saccharomyces cerevisiae yeast (CU-TPD4 strain) that has a high potential for fat accumulation. We have used yeast to produce biojet fuel to meet future energy demand. If we can develop Thailand's potential in the production of bio-jet fuel, it would help our economy progress as well."
The project has received funding from the National Research Council of Thailand, focusing specifically on the Sino-Thai Plans for Renewable Energy to work on the extraction of fat, production of bio-jet fuel from microbial lipid synthesis, and bio-refinery of jet fuel from biomass resources. Aside from the two researchers mentioned, the team also includes three doctoral students from the Department of Botany, namely Dr. Nuttha Chuengcharoenpanich, Dr. Wannaporn Wattanasunthorn, and Mr. Thanapong Tangwanaphrai, with the collaboration of Dr. Surisa Suwannarangsee from the National Centre for Genetic Engineering and Biotechnology under the National Science and Technology Development Agency. They have collaborated with a group of Chinese researchers, including Prof. Zhongming Wang and Prof. Wei Qi from the Guangzhou Institute of Energy Conversion at the Chinese Academy of Science (GIEC).
High-potency yeast produces fuel
The researchers selected the yeast from 53 soil samples found in Mae Hongson and other nearby provinces and discovered Saccharomyces cerevisiae yeast (CU-TPD4 strain), which has a high potential for fat accumulation. This came at a time when there had not yet been any reports that this type of yeast could produce high levels of fuel at the same level as existing fuel-producing yeast.
"S. cerevisiae is classified as a microorganism with high safety levels. It is known to have been used for a very long time, is Generally Recognized as Safe, GRAS, and is therefore used in the food production industry, such as for beer or bread production. Yet, it has not been reported that the particular strain of yeast has been used for the production of fat at the industrial level."
Prof. Dr. Warawut explained that the type of yeast that has been discovered can produce and collect fat in the cells at a level as high as 20–25% of the dry cell weight. These fat properties are extremely beneficial for the development of bioenergy, such as biodiesel.
"Using oleaginous yeast as a feedstock for biofuel production has several advantages over using plants as an oil source, including the fact that the life cycle of yeast is short, a variety of foods can be used for its cultivation, it is relatively cheap, and it requires little labor. It can be cultivated at any time and doesn't depend on the season; scaling up production is easy, while the fat produced has the same characteristics as that produced from plants. It is safe both for humans and the environment.
Prof. Dr. Warawut also added an important advantage of oil production from yeast, saying that "when the process is developed and the yeast is used at the industrial level, its culture at 40 degrees Celsius can help reduce the cost of the cooling process to control the temperature of the fermentation tank."
This research has attracted interest both nationally and internationally from researchers from such institutions as Hamburg University of Technology (TUHH) in Germany and Toulouse Biotechnology Institute (TBI) in France. Researchers from Hamburg University of Technology (TUHH) in Germany and Toulouse Biotechnology Institute (TBI) in France saw the opportunity to expand the CU-TPD4 yeast leavening production for use in oil, bread, alcohol, and other food products.
Raising yeast using agricultural waste
In addition to getting energy that is cleaner than fossil energy, the process of growing yeast to produce oil also makes use of agricultural waste, which is part of driving the circular economy and reducing air pollution problems from the burning of agricultural waste.
In addition to animal fodder grass, agricultural waste and various types of lignocellulosic biomass can be used as carbon sources to feed fat-accumulating yeasts for example, rice straw, corn cobs, sugarcane bagasse, as well as various vegetable and fruit peels such as banana peels, durian peels, and bean shells, especially rice straw, which is a large amount of waste material in Thailand. Therefore, it is considered another way to use agricultural waste to be beneficial as well.
Moreover, there are also reports of waste disposal such as office paper scraps. and wastewater from industrial plants, including wastewater from paper factories. Wastewater from a sago flour factory and wastewater from homes can be used as a carbon source as well. The main aim is to reduce production costs, eliminate waste, and increase the value of such waste materials to make them more useful.
Improvement of yeast strains, expansion of oil production, and adding value to the food and pharmaceutical industries
The growth of yeast and the amount of oil produced by yeast on a laboratory scale are still not sufficient to meet the demand for fuel in the market. Therefore, it is necessary to develop technology to expand production capacity.
"This can be done by using different methods, such as improving strains of fat-accumulating yeast to increase their ability to produce and accumulate more fat or improving the yeast to be more resistant to conditions that are not suitable for growth. Improve yeast to be more resistant to conditions that are not suitable for growth, such as being able to withstand higher temperatures in the production process to reduce cooling costs. They can also be more resistant to toxins that occur from the process of pretreatment of agricultural waste to reduce the steps and costs of the detoxification process, for example."
Prof. Dr. Warawut explained that at present, the research is focused on increasing the oil production level of the yeast S. cerevisiae at higher levels by genetically modifying the increased expression of the enzyme Acetyl-CoA carboxylase in the TWP02 strain, resulting in increased fat production.
After that, researchers scaled up their study of the oil production process from yeast cells using research tools from the Biological Engineering and Precision Fermentation Laboratory (Bioengineering and precision fermentation laboratory) of the Biotechnology and Materials Research Department Innovation Institute, PTT Public Company Limited, which is Thailand's leading laboratory in biological processes and fermentation processes. Biotechnology research tools from the upstream process are available for the selection and improvement of microbial strains. The fermentation process ranges from a laboratory scale with a 2-liter fermentation tank to a prototype research unit with a 20,000-liter fermentation tank. This includes downstream processes used to separate microbial cells, such as breaking microbial cells with pressure, increasing the concentration and purity of biologics, and forming biopharmaceuticals into dry form by heating or cooling. The potential of the laboratory helps enable this research project to evaluate the potential for designing an appropriate biofuel production process for aircraft.
Prof. Dr. Warawut ended by saying that in addition to producing biodiesel and jet fuel, improving fat-accumulating yeast strains can produce fatty acids such as unsaturated fatty acids. This is a type of fat that is in demand in the market and has a high value. It can also be used as a starting material for producing other products in the fields of food, cosmetics, and medicine that can meet the needs of sustainable life science businesses as well.
About Chulalongkorn University
Chulalongkorn University has made the world's top 50 university list for employment outcomes, which reflects both the high employment rate and work ability of Chula graduates. The university is also listed as the best in Thailand for the 15th Consecutive Year (since 2009), according to the newly released QS World University Rankings 2024, putting Chula at 211th in the world, up from 244th last year. READ MORE
Related articles
- Chula’s Yeast Fuel to Expand Production for the Aerospace Industry (Times Higher Education)
More than 50,000 articles in our online library!
Use the categories and tags listed below to access the nearly 50,000 articles indexed on this website.
Advanced Biofuels USA Policy Statements and Handouts!
- For Kids: Carbon Cycle Puzzle Page
- Why Ethanol? Why E85?
- Just A Minute 3-5 Minute Educational Videos
- 30/30 Online Presentations
- “Disappearing” Carbon Tax for Non-Renewable Fuels
- What’s the Difference between Biodiesel and Renewable (Green) Diesel? 2020 revision
- How to De-Fossilize Your Fleet: Suggestions for Fleet Managers Working on Sustainability Programs
- New Engine Technologies Could Produce Similar Mileage for All Ethanol Fuel Mixtures
- Action Plan for a Sustainable Advanced Biofuel Economy
- The Interaction of the Clean Air Act, California’s CAA Waiver, Corporate Average Fuel Economy Standards, Renewable Fuel Standards and California’s Low Carbon Fuel Standard
- Latest Data on Fuel Mileage and GHG Benefits of E30
- What Can I Do?
Donate
DonateARCHIVES
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- June 2007
- February 2007
- January 2007
- October 2006
- April 2006
- January 2006
- April 2005
- December 2004
- November 2004
- December 1987
CATEGORIES
- About Us
- Advanced Biofuels Call to Action
- Aviation Fuel/Sustainable Aviation Fuel (SAF)
- BioChemicals/Renewable Chemicals
- BioRefineries/Renewable Fuel Production
- Business News/Analysis
- Cooking Fuel
- Education
- 30/30 Online Presentations
- Competitions, Contests
- Earth Day 2021
- Earth Day 2022
- Earth Day 2023
- Earth Day 2024
- Executive Training
- Featured Study Programs
- Instagram TikTok Short Videos
- Internships
- Just a Minute
- K-12 Activities
- Mechanics training
- Online Courses
- Podcasts
- Scholarships/Fellowships
- Teacher Resources
- Technical Training
- Technician Training
- University/College Programs
- Events
- Coming Events
- Completed Events
- More Coming Events
- Requests for Speakers, Presentations, Posters
- Requests for Speakers, Presentations, Posters Completed
- Webinars/Online
- Webinars/Online Completed; often available on-demand
- Federal Agency/Executive Branch
- Agency for International Development (USAID)
- Agriculture (USDA)
- Commerce Department
- Commodity Futures Trading Commission
- Congressional Budget Office
- Defense (DOD)
- Air Force
- Army
- DARPA (Defense Advance Research Projects Agency)
- Defense Logistics Agency
- Marines
- Navy
- Education Department
- Energy (DOE)
- Environmental Protection Agency
- Federal Energy Regulatory Commission (FERC)
- Federal Reserve System
- Federal Trade Commission
- Food and Drug Administration
- General Services Administration
- Government Accountability Office (GAO)
- Health and Human Services (HHS)
- Homeland Security
- Housing and Urban Development (HUD)
- Interior Department
- International Trade Commission
- Joint Office of Energy and Transportation
- Justice (DOJ)
- Labor Department
- National Academy of Sciences
- National Aeronautics and Space Administration
- National Oceanic and Atmospheric Administration
- National Research Council
- National Science Foundation
- National Transportation Safety Board (NTSB)
- Occupational Safety and Health Administration
- Overseas Private Investment Corporation
- Patent and Trademark Office
- Securities and Exchange Commission
- State Department
- Surface Transportation Board
- Transportation (DOT)
- Federal Aviation Administration
- National Highway Traffic Safety Administration (NHTSA)
- Pipeline and Hazardous Materials Safety Admin (PHMSA)
- Treasury Department
- U.S. Trade Representative (USTR)
- White House
- Federal Legislation
- Federal Litigation
- Federal Regulation
- Feedstocks
- Agriculture/Food Processing Residues nonfield crop
- Alcohol/Ethanol/Isobutanol
- Algae/Other Aquatic Organisms/Seaweed
- Atmosphere
- Carbon Dioxide (CO2)
- Field/Orchard/Plantation Crops/Residues
- Forestry/Wood/Residues/Waste
- hydrogen
- Manure
- Methane/Biogas
- methanol/bio-/renewable methanol
- Not Agriculture
- RFNBO (Renewable Fuels of Non-Biological Origin)
- Seawater
- Sugars
- water
- Funding/Financing/Investing
- grants
- Green Jobs
- Green Racing
- Health Concerns/Benefits
- Heating Oil/Fuel
- History of Advanced Biofuels
- Infrastructure
- Aggregation
- Biofuels Engine Design
- Biorefinery/Fuel Production Infrastructure
- Carbon Capture/Storage/Use
- certification
- Deliver Dispense
- Farming/Growing
- Precursors/Biointermediates
- Preprocessing
- Pretreatment
- Terminals Transport Pipelines
- International
- Abu Dhabi
- Afghanistan
- Africa
- Albania
- Algeria
- Angola
- Antarctica
- Argentina
- Armenia
- Aruba
- Asia
- Asia Pacific
- Australia
- Austria
- Azerbaijan
- Bahamas
- Bahrain
- Bangladesh
- Barbados
- Belarus
- Belgium
- Beliz
- Benin
- Bermuda
- Bhutan
- Bolivia
- Bosnia and Herzegovina
- Botswana
- Brazil
- Brunei
- Bulgaria
- Burkina Faso
- Burundi
- Cambodia
- Cameroon
- Canada
- Caribbean
- Central African Republic
- Central America
- Chad
- Chile
- China
- Colombia
- Congo, Democratic Republic of
- Costa Rica
- Croatia
- Cuba
- Cyprus
- Czech Republic
- Denmark
- Dominican Republic
- Dubai
- Ecuador
- El Salvador
- Equatorial Guinea
- Eqypt
- Estonia
- Ethiopia
- European Union (EU)
- Fiji
- Finland
- France
- French Guiana
- Gabon
- Georgia
- Germany
- Ghana
- Global South
- Greece
- Greenland
- Guatemala
- Guinea
- Guyana
- Haiti
- Honduras
- Hong Kong
- Hungary
- Iceland
- India
- Indonesia
- Iran
- Iraq
- Ireland
- Israel
- Italy
- Ivory Coast
- Jamaica
- Japan
- Jersey
- Jordan
- Kazakhstan
- Kenya
- Korea
- Kosovo
- Kuwait
- Laos
- Latin America
- Latvia
- Lebanon
- Liberia
- Lithuania
- Luxembourg
- Macedonia
- Madagascar
- Malawi
- Malaysia
- Maldives
- Mali
- Malta
- Marshall Islands
- Mauritania
- Mauritius
- Mexico
- Middle East
- Monaco
- Mongolia
- Morocco
- Mozambique
- Myanmar/Burma
- Namibia
- Nepal
- Netherlands
- New Guinea
- New Zealand
- Nicaragua
- Niger
- Nigeria
- North Africa
- North Korea
- Northern Ireland
- Norway
- Oman
- Pakistan
- Panama
- Papua New Guinea
- Paraguay
- Peru
- Philippines
- Poland
- Portugal
- Qatar
- Romania
- Russia
- Rwanda
- Saudi Arabia
- Scotland
- Senegal
- Serbia
- Sierra Leone
- Singapore
- Slovakia
- Slovenia
- Solomon Islands
- South Africa
- South America
- South Korea
- South Sudan
- Southeast Asia
- Spain
- Sri Lanka
- Sudan
- Suriname
- Swaziland
- Sweden
- Switzerland
- Taiwan
- Tanzania
- Thailand
- Timor-Leste
- Togo
- Trinidad and Tobago
- Tunisia
- Turkey
- Uganda
- UK (United Kingdom)
- Ukraine
- United Arab Emirates UAE
- Uruguay
- Uzbekistan
- Vatican
- Venezuela
- Vietnam
- Wales
- Zambia
- Zanzibar
- Zimbabwe
- Marine/Boat Bio and Renewable Fuel/MGO/MDO/SMF
- Marketing/Market Forces and Sales
- Opinions
- Organizations
- Original Writing, Opinions Advanced Biofuels USA
- Policy
- Presentations
- Biofuels Digest Conferences
- DOE Conferences
- Bioeconomy 2017
- Bioenergy2015
- Biomass2008
- Biomass2009
- Biomass2010
- Biomass2011
- Biomass2012
- Biomass2013
- Biomass2014
- DOE Project Peer Review
- Other Conferences/Events
- R & D Focus
- Carbon Capture/Storage/Use
- Co-Products
- Feedstock
- Logistics
- Performance
- Process
- Vehicle/Engine/Motor/Aircraft/Boiler
- Yeast
- Railroad/Train/Locomotive Fuel
- Resources
- Books Web Sites etc
- Business
- Definition of Advanced Biofuels
- Find Stuff
- Government Resources
- Scientific Resources
- Technical Resources
- Tools/Decision-Making
- Rocket/Missile Fuel
- Sponsors
- States
- Alabama
- Alaska
- Arizona
- Arkansas
- California
- Colorado
- Connecticut
- Delaware
- Florida
- Georgia
- Hawai'i
- Idaho
- Illinois
- Indiana
- Iowa
- Kansas
- Kentucky
- Louisiana
- Maine
- Maryland
- Massachusetts
- Michigan
- Midwest
- Minnesota
- Mississippi
- Missouri
- Montana
- Native American tribal nation lands
- Nebraska
- Nevada
- New Hampshire
- New Jersey
- New Mexico
- New York
- North Carolina
- North Dakota
- Ohio
- Oklahoma
- Oregon
- Pennsylvania
- Puerto Rico
- Rhode Island
- South Carolina
- South Dakota
- Tennessee
- Texas
- Utah
- Vermont
- Virginia
- Washington
- Washington DC
- West Coast
- West Virginia
- Wisconsin
- Wyoming
- Sustainability
- Uncategorized
- What You Can Do
tags
© 2008-2023 Copyright Advanced BioFuels USA. All Rights reserved.
Comments are closed.