We are not accepting donations from people or companies in Florida due to unfair reporting requirements and fees not imposed by any other state.

Call to Action for a Truly Sustainable Renewable Future
August 8, 2013 – 5:07 pm | No Comment

-Include high octane/high ethanol Regular Grade fuel in EPA Tier 3 regulations.
-Use a dedicated, self-reducing non-renewable carbon user fee to fund renewable energy R&D.
-Start an Apollo-type program to bring New Ideas to sustainable biofuel and …

Read the full story »
Business News/Analysis

Federal Legislation

Political news and views from Capitol Hill.

More Coming Events

Conferences and Events List in Addition to Coming Events Carousel (above)

Original Writing, Opinions Advanced Biofuels USA

Sustainability

Home » Algae/Other Aquatic Organisms/Seaweed, Co-Products, Energy, Federal Agency, Feedstock, Feedstocks, Process, R & D Focus, Sustainability, University/College Programs, Washington

WSU, PNNL Convert Biofuel Waste into Commodity, Now Targeting Sewage Sludge

Submitted by on October 9, 2017 – 5:36 pmNo Comment

by Maegan Murray (WSU Tri-Cities/Washington State University)  A method of converting a biofuel waste product into a usable and valuable commodity has been discovered by researchers at Washington State University and Pacific Northwest National Laboratory.

Converting algae to biofuels is a two-step process. The first, developed by PNNL, applies high pressure and high temperature to algae to create bio oil. The second converts that bio oil into biofuel, which can replace gasoline, diesel and jet fuel.

It’s that first step, called hydrothermal liquefaction, that produces waste — approximately 25 to 40 percent of carbon and 80 percent of nutrients from the algae are left behind in wastewater streams.

Bionatural gas and fertilizer

The wastewater is generally hard to process because it contains a variety of different chemicals in small concentrations, said Birgitte K. Ahring, professor at WSU Tri-Cities’ Bioproducts, Sciences and Engineering Laboratory. But Ahring and her team have found that adapting anaerobic microbes — microbes that live without oxygen — to break down the remaining residue is a viable option. Through this process, the material becomes degradable and gets transformed into a bionatural gas without the use of harsh chemicals. The solid material that remains can also be applied as a fertilizer or recycled back into the hydrothermal liquefaction process for further use.

The results of the team’s research are published this month in Bioresource Technology.   READ MORE  Abstract (Bioresource Technology)

Related Post

Tags: , , , , , , , , ,

Comments are closed.