The Plan to Grab the World’s Carbon with Supercharged Plants
by Emily Dreyfuss (Wired) … Plant biologist Joanne Chory thinks plants can do more. She has studied the genetics of plants at the Salk Institute in San Diego for more than 30 years, and she and the rest of the five-person Harnessing Plants Initiative team are convinced that photosynthesis itself can be exploited to create a biological solution to carbon capture.
Engineers have tried to do this with massive machines, to limited effect. “As plant biologists, we just looked at the problem a little differently. We didn’t think of an engineering solution. We didn’t think about building a big machine that could suck in air and then capture the CO2 on a sponge, or whatever. We said, ‘That’s what plants were evolved to do,’” Chory says.
Unlike engineered solutions, biology harnesses evolutionary time, because plants have already evolved for 500 million years to be great at sucking up CO2. …
…
Chory believes the key to fixing that imbalance is to train plants to suck up just a little more CO2 and keep it longer. She is working on engineering the world’s crop plants to have bigger, deeper roots made of a natural waxy substance called suberin—found in cork and cantaloupe rinds—which is an incredible carbon-capturer and is resistant to decomposition. By encouraging plants to have bigger, deeper, more suberin-rich roots, Chory can trick them into fighting climate change as they grow. The roots will store CO2, and when farmers harvest their crops in the fall, those deep-buried roots will stay in the soil and keep their carbon sequestered in the dirt, potentially for hundreds of years.
…
Those roots will very slowly break down and deposit their carbon little by little in the soil. This could reverse some of the human-caused depletion that has removed carbon and other nutrients from the soil due to agricultural practices that “treat soil like dirt,” to quote UC Merced soil scientist Asmeret Asefaw Berhe, who also spoke at TED 2019.
…
They’ve identified genetic pathways that control for the three traits they want to bring out in plants: increasing suberin, enlarging root systems, and making the roots grow down deeper into the ground. Now they will begin to test combining those three traits in a model plant called arabidopsis in the lab, before moving on to crop plants like corn, soybean, and rice. They hope to have prototypes of souped up versions of major crops within five years and are already in talks with agricultural companies to partner on testing them. READ MORE includes TED talk VIDEO