The Next Generation of Biodiesel Coproduct Research
by Ron Kotrba (Biodiesel Magazine) The uses of glycerin – crude, USP-grade or otherwise – and other byproducts from biodiesel production are virtually limitless. Profiled here is the glycerin and coproduct research of three Next Generation Scientists for Biodiesel.
In the early days, the quality of crude glycerin produced at biodiesel plants was of little concern to biodiesel producers. “U.S. biodiesel producers were mainly interested only in the fuel aspect of the business and paid little attention to the byproducts they produced, even though crude glycerin production is 10 percent of the final product,” says Darol Brown, president of Portland, Ore.-based Sego International Inc. “Most did not pay attention to whether they could find a market for the glycerin, or what level of purity the market required. It was generally considered that a market for the crude would develop without their involvement, so they put no time or effort into understanding the total end result of the process.” Brown says in the 1990s, he was the largest importer of refined glycerin in the U.S. “What they needed to consider, and what they have now learned, is that the price they get for their byproducts helps offset their cost of production and profits,” he says. “Those who did not understand this have generally been bought out, or they have gone out of business.”
…
“In the long term,” he says, “most glycerin should be refined to USP and sold into the high-end markets, and these refiners are starting to produce more refined product every day, but it does require a better quality of crude to make it feasible.” In the early days, biodiesel producers were producing low-quality crude with 35 to 60 percent glycerin content with high ash, methanol and fatty acid content, and while some producers today still produce similar low-value material, many plants have installed means to recover excess methanol and neutralize the caustic glycerin solution with acid to float out the fatty acids, which are suspended by the high pH of the reaction, and subsequently remove the ash and salts from the neutralization process. Water removal is also necessary to lower shipping costs.
…
(Derek) Pickett says the project was first developed by Bill Ayres from R3 Sciences LLC as a way to produce power from glycerin. …
The main goal of the system is to couple the rig with the initial production of biodiesel. Once more research is completed with the system and upgrades are made, the rig could potentially use the glycerin byproduct from the initial production of biodiesel for power generation. He says the most important finding is that the overall system is possible. “As far as I know, this is a very unique setup that no other university or company has attempted. Using glycerin for hydrogen-rich syngas production has been completed but utilizing the syngas for combustion and power generation has not been done. Additionally, once the rig is capable of operating directly with the initial production of biodiesel, there will be many commercial applications for the process.” READ MORE