We are not accepting donations from people or companies in Florida due to unfair reporting requirements and fees not imposed by any other state.

Call to Action for a Truly Sustainable Renewable Future
August 8, 2013 – 5:07 pm | No Comment

-Include high octane/high ethanol Regular Grade fuel in EPA Tier 3 regulations.
-Use a dedicated, self-reducing non-renewable carbon user fee to fund renewable energy R&D.
-Start an Apollo-type program to bring New Ideas to sustainable biofuel and …

Read the full story »
Business News/Analysis

Federal Legislation

Political news and views from Capitol Hill.

More Coming Events

Conferences and Events List in Addition to Coming Events Carousel (above)

Original Writing, Opinions Advanced Biofuels USA

Sustainability

Home » California, Co-Products, Energy, Federal Agency, New Mexico, Process, R & D Focus

Study Speeds Transformation of Biofuel Waste into Useful Chemicals

Submitted by on November 10, 2017 – 11:37 amNo Comment

by Jules Bernstein (Phys.Org/Sandia National Laboratories)  A Sandia National Laboratories-led team has demonstrated faster, more efficient ways to turn discarded plant matter into chemicals worth billions. The team’s findings could help transform the economics of making fuels and other products from domestically grown renewable sources.

Lignin, the tough material left over from biofuel production, contains compounds that can be converted into products like nylon, plastics and drugs. It is one of the main components of , and gives plants structural integrity as well as protection from microbial attacks.

Products made from converted lignin could subsidize , making the cost of biofuels more competitive with petroleum. Unfortunately, lignin’s toughness also makes it difficult to extract its valuable compounds. Scientists have wrestled for decades with deconstructing it. As a result, lignin often sits unused in giant piles.

Sandia bioengineer Seema Singh and her team have demonstrated two new routes to lignin conversion that combine the advantages of earlier methods while minimizing their drawbacks. The team’s recent findings are described in the journal Scientific Reports.

Her team has demonstrated two new techniques that incorporate the speed of a chemical method and the precision of a biological one. In both cases, Singh’s team ultimately produced high-value chemicals that currently are derived only from petroleum: muconic acid and pyrogallol.

The team’s first new conversion method is a multi-stage process that begins by pre-treating lignin with a weak solution of hydrogen peroxide and water. Intermediary molecules vanillin and syringate result from the treatment.

The second method skips the process of having to break down the lignin altogether. Instead, the team genetically engineered a tobacco plant. As it grows, the plant produces high amounts of intermediate compound protocatechuate, known as PCA. Then, the only steps remaining were to extract that compound and use the engineered E. coli to make the muconic acid.  READ MORE  Abstract

New Routes to Renewables: Sandia Speeds Transformation of Biofuel Waste Into Wealth (Newswise)

Related Post

Tags: , , , , ,

Comments are closed.