Researchers Completely Re-engineer Yeast to Make More Biofuel
by John Timmer (Ars Technica) Systems-level engineering of a living thing is remarkably complicated. A little while ago, we covered the idea of using photovoltaic materials to drive enzymatic reactions in order to produce specific chemicals. The concept is being considered mostly because doing the same reaction in a cell is often horribly inefficient, because everything else in the cell is trying to regulate the enzymes, trying to use the products, trying to convert the byproducts into something toxic, or up to something even more annoying. But in many cases, these reactions rely on chemicals that are only made by cells, leaving some researchers to suspect it still might be easier to use living things in the end.
A new paper in Nature Catalysis may support or contradict this argument, depending on your perspective. In the end, the authors of the new paper re-engineer standard brewer’s yeast to produce molecules that can be used as fuel for internal combustion engines. The full catalog of changes they have to make is a bit mind-numbing, and most achieve a small, incremental increase in production. The end result is a large step forward toward biofuel production, but the effort involved is intimidating.
…
The actual hydrocarbons are built up in stages. The process starts with an extremely short hydrocarbon chemically tethered to a molecule that’s recognized by the enzymes involved. Enzymes add additional carbon atoms to the growing chain in pairs, gradually extending it. As the chain gets progressively longer, its ability to fit into the active site of the enzymes gradually gets worse. At random points in the process, a separate enzyme can cut the hydrocarbon’s tether off, terminating the process. This typically happens when the chains are between 16 and 22 carbons long.
Obviously, there are a number of places to intervene in this process in order to favor the production of shorter chains. The research team appears to have decided to try all of them. READ MORE
Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids (Nature Catalysis)
A Combined Approach: Partnered expertise helps yeast developers keep up with evolution in the ethanol industry. (Ethanol Producer Magazine)