Researchers Are Turning Kitchen Waste into Biofuels
by Steven Ashby (Pacific Northwest National Laboratory/Phys.Org) When we eat, our bodies convert food into energy that fuels our lives. But what happens to the energy stored in the 80 billion pounds of food thrown away annually in America? As part of advancing sustainable energy solutions, scientists at the Department of Energy’s Pacific Northwest National Laboratory are converting food waste into clean, renewable fuel that could power our planes, trains and automobiles.
For decades, PNNL researchers have supported DOE’s goals to cost-effectively produce fuels derived from plants or animal wastes rather than petroleum. They have developed technologies to produce these biofuels from feedstocks including agricultural residues, forest byproducts, algae, and even sewer sludge and manure.
In their recent efforts, researchers successfully converted food waste from Joint Base Lewis-McChord and Coyote Ridge Corrections Center into an energy-dense biofuel that could help replace today’s fossil fuels. Early results suggest food waste might deliver a trifecta of efficiency, economic and environmental benefits.
First, from an efficiency standpoint, food waste’s higher fat content and lower mineral content allows more gallons of biofuel to be produced per ton of food waste than with other feedstocks. Easily made into a pumpable slurry, food waste simplifies production and minimizes the cost of pre-processing that other feedstocks need.
Second, it may be possible to obtain food waste less expensively than other feedstocks with higher cultivation and harvesting expenses. It is already being generated in abundance, and people are willing to pay for its disposal. Using food waste rather than growing crops such as corn or soybeans to produce biofuel also prevents arable land from being devoted to fuel rather than food.
Third, turning this waste into fuel would keep it from going to landfills, which is important given recent bans specific to food wastes. As waste decomposes, it generates methane—a potent greenhouse gas released into the environment if not captured.
…
The researchers are testing different types of food waste to see if they can achieve consistent outcomes. During experiments, they address numerous chemical and process engineering challenges as they arise.
…
Researchers also seek to expand the base of biomass resources to gain efficiencies needed for large-scale adoption.
…
For example, they are assessing the resources available within a 50-mile radius of Detroit, Mich., to determine the mixture of food waste, sewage sludge, and fats, oils and greases that could be consolidated and used to produce biofuel. Including food waste would allow biofuel production plants to be up to 10 times larger in urban areas—significant progress toward DOE’s cost and emission-reduction targets for biofuels.
In addition to engineering challenges, PNNL is addressing practical considerations. READ MORE
Repurposing Infrastructure Facilitates Food Waste Codigestion (BioCycle Magazine)
Scientists Devise a new way to Turn Food Waste into Biofuels (Edgy)