by Raj Shah and Amanda Loo (altenergymag.com/Koehler Instrument Company) Wastes from fields and wastes from processing are the two kinds of agricultural wastes. Field wastes are present after harvesting crops and include stems, leaves, and stalks, and waste after processing crops includes seeds, peels, husks, etc.
Lignocellulosic biomass is composed of four different categories that include agricultural wastes, hardwood, softwood, and grass [2]. These biomasses normally do not receive treatment and are disposed of, which can contaminate the environment and cause environmental load. Wastes from fields and wastes from processing are the two kinds of agricultural wastes. Field wastes are present after harvesting crops and include stems, leaves, and stalks, and waste after processing crops includes seeds, peels, husks, etc. [3]. The lignocellulosic biomass consisting of hemicellulose, cellulose, and lignin from agricultural waste can be converted into biofuels [4].
Pretreatment processes are typically required before converting agricultural waste into biofuels as these processes break down the waste into smaller components. Microwave pyrolysis is a very popular thermochemical method to convert biomass into biofuels, specifically biochar, bio-oil, and syngas. Many pathways have also been studied to convert biomass feedstock such as oil, syngas, alcohols, and sugars into aviation fuels.
Pretreatment Processes
From lignocellulose wastes, substances such as methane, carbohydrates, enzymes, amino acids, etc. can be obtained [5]. However, lignocellulose wastes are often disposed of, limiting their use potential. As previously mentioned, lignocellulosic biomass can be converted into biofuels as well demonstrating great advantages. Furthermore, lignocellulose materials are CO2 neutral as the CO2 from the biomass does not add any additional carbon to the carbon cycle [6].
Breaking down the cell wall of the biomass is complicated and requires pretreatment before converting it into biofuels. Physical, chemical, and biological approaches are common in the pretreatment process of lignocellulosic biomass. The major goals of pretreatment are to form sugars with hydrolysis, to use energy efficiently, and to reduce biofuel production costs [7]. Physical pretreatment is relatively inexpensive and convenient and includes radiation, milling, and grinding. Wheat straw has been previously studied, and it was determined that there was a 53% increase in biofuel yield with pretreatment at 180℃ than without pretreatment [8].
...
More green pretreatment methods have been studied in recent years, which include ultrasound, electron beam, and pulsed-electric field technologies. A significant shortcoming of these green technology approaches is that they demonstrate poor efficiency and limited industrial scaling ability. As Figure 1 shows, pretreatment breaks down the biomass into its hemicellulose, cellulose, and lignin components, making it easier for conversion into biofuel.
An increasingly popular chemical pretreatment method is using dilute acid.
...
Ammonia fiber explosion/expansion (AFEX) is a physico-chemical pretreatment that branched off the ammonia-based chemical pretreatment [7], with the main difference being that AFEX instead uses anhydrous liquid ammonia.
...
Microwave Pyrolysis
The process of biochemical conversion requires pretreatment processes for the lignocellulosic components and is not as efficient compared to thermochemical conversion. Biomass recalcitrance, where the cell wall of crops and plants resists enzymatic degradation to process the biomass, limits the efficiency of biochemical conversion [9]. Instead, thermochemical conversion methods are used to convert agricultural waste to biofuels, and the main five processes are combustion, pyrolysis, gasification, combustion, and hydrothermal liquefaction [4].
...
Another study using solar-powered microwave pyrolysis was done, but corn stover was studied instead of rice straw. The goal was to maximize wood vinegar and biochar products from corn stover as biomass feedstock that is plentiful in India.
...
A general trend of an increase in bio-oil production is seen with the presence of the bio-char additive.
...
Aviation Fuels
Commercial airline aviation fuel consumption was 260 million m3/year in 2005, which has increased to more than 340 million m3/year in 2018 and is expected to continue to grow [13]. 669 million tons of CO2 are released by the aviation sector annually, with an expected six times increase by 2050 [14]. Road, rail, and maritime sectors all use biofuels, but the most promising changes are expected to be seen in the commercial aviation sector in reducing greenhouse gas emissions and reducing oil dependency [15]. However, the ASTM (American Society for Testing Materials) and EU standards of bio-aviation fuels are that they need to be hydrocarbons without oxygen, making it difficult to produce from biomass as biomass has a high wt% of oxygen [13]. The ASTM D1655-09 lists the specifications of jet fuels, such as density, viscosity, energy density, etc. that must be met by the aviation industry [14].
...
In oil-to-aviation fuel conversion, catalytic hydrotreating is performed at temperatures of 250-400℃ with high pressure, resulting in a product referred to as hydroprocessed renewable jet fuel. Noble metal-supported and alumina-supported metals are used as catalysts. The unsaturations in the vegetable oil feedstocks transform into branched hydrocarbons during the hydrotreating process. One shortcoming of the oil-to-aviation process is that hydrotreating does not produce cycloalkanes or aromatics. The process of gas-to-jet includes the gasification of biomass to syngas, then undergoing Fischer-Tropsch synthesis of syngas to hydrocarbons of the C1-C50 range.
...
The alcohol-to-jet process can convert oxygenated fuel to hydrocarbons that are compatible with today’s transportation fuels. Finally, the sugar conversion pathway of sugars to hydrocarbons is complex as there are only six carbon atoms in sugars and their derivatives, while jet fuels require longer carbon chains. Removing oxygen from the products with processes such as hydrogenation and dehydration must then be done [14].
In a 2020 experiment using waste cooking oil from Egyptian fast-food restaurants to create jet fuel, 2.5% w/v zinc aluminate (ZnAl2O4) nanoparticles were used as catalysts because they can decrease the H/C ratio in thermal cracking [17].
...
Conclusion
The pretreatment processes needed for biochemical conversion methods break down the lignocellulose biomass feedstock into smaller components, making it easier to convert the input biomass into biofuels. READ MORE
References
[1] Duque-Acevedo, M., Belmonte-Urena, L. J., Cortés-García, F. J., & Camacho-Ferre, F. (2020). Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation, 22, e00902.
[2] Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310-318.
[3] Rao, P., & Rathod, V. (2019). Valorization of food and agricultural waste: a step towards greener future. The Chemical Record, 19(9), 1858-1871.
[4] Ge, S., et al. (2021). Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach. Renewable and Sustainable Energy Reviews, 135, 110148.
[5] Aftab, M. N., Iqbal, I., Riaz, F., Karadag, A., & Tabatabaei, M. (2019). Different pretreatment methods of lignocellulosic biomass for use in biofuel production. Biomass for Bioenergy-Recent Trends and Future Challenges.
[6] Sasmal, S., & Mohanty, K. (2018). Pretreatment of lignocellulosic biomass toward biofuel production. In Biorefining of Biomass to Biofuels (pp. 203-221). Springer, Cham.
[7] Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renewable and Sustainable Energy Reviews, 90, 877-891.
[8] Mahmood, H., Moniruzzaman, M., Iqbal, T., & Khan, M. J. (2019). Recent advances in the pretreatment of lignocellulosic biomass for biofuels and value-added products. Current Opinion in Green and Sustainable Chemistry, 20, 18-24.
[9] Fodah, A. E. M., Ghosal, M. K., & Behera, D. (2021). Studies on microwave-assisted pyrolysis of rice straw using solar photovoltaic power. BioEnergy Research, 14(1), 190-208.
[10] Wang, Y., et al. (2018). Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system. Bioresource technology, 269, 162-168.
[11] Wu, C., Budarin, V. L., Gronnow, M. J., De Bruyn, M., Onwudili, J. A., Clark, J. H., & Williams, P. T. (2014). Conventional and microwave-assisted pyrolysis of biomass under different heating rates. Journal of Analytical and Applied Pyrolysis, 107, 276-283.
[12] Fodah, A. E. M., Ghosal, M. K., & Behera, D. (2021). Solar‐powered microwave pyrolysis of corn stover for value‐added products and process techno‐economic assessment. International Journal of Energy Research, 45(4), 5679-5694.
[13] Wang, M., Dewil, R., Maniatis, K., Wheeldon, J., Tan, T., Baeyens, J., & Fang, Y. (2019). Biomass-derived aviation fuels: Challenges and perspective. Progress in Energy and Combustion Science, 74, 31-49.
[14] Díaz-Pérez, M. A., & Serrano-Ruiz, J. C. (2020). Catalytic production of jet fuels from biomass. Molecules, 25(4), 802.
[15] Kousoulidou, M., & Lonza, L. (2016). Biofuels in aviation: Fuel demand and CO2 emissions evolution in Europe toward 2030. Transportation Research Part D: Transport and Environment, 46, 166-181.
[16] Wang, H., Yang, B., Zhang, Q., & Zhu, W. (2020). Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons. Renewable and Sustainable Energy Reviews, 120, 109612.
[17] El-Araby, R., Abdelkader, E., El Diwani, G., & Hawash, S. I. (2020). Bio-aviation fuel via catalytic hydrocracking of waste cooking oils. Bulletin of the National Research Centre, 44(1), 1-9.
fiber
More than 50,000 articles in our online library!
Use the categories and tags listed below to access the nearly 50,000 articles indexed on this website.
Advanced Biofuels USA Policy Statements and Handouts!
- For Kids: Carbon Cycle Puzzle Page
- Why Ethanol? Why E85?
- Just A Minute 3-5 Minute Educational Videos
- 30/30 Online Presentations
- “Disappearing” Carbon Tax for Non-Renewable Fuels
- What’s the Difference between Biodiesel and Renewable (Green) Diesel? 2020 revision
- How to De-Fossilize Your Fleet: Suggestions for Fleet Managers Working on Sustainability Programs
- New Engine Technologies Could Produce Similar Mileage for All Ethanol Fuel Mixtures
- Action Plan for a Sustainable Advanced Biofuel Economy
- The Interaction of the Clean Air Act, California’s CAA Waiver, Corporate Average Fuel Economy Standards, Renewable Fuel Standards and California’s Low Carbon Fuel Standard
- Latest Data on Fuel Mileage and GHG Benefits of E30
- What Can I Do?
Donate
DonateARCHIVES
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- June 2007
- February 2007
- January 2007
- October 2006
- April 2006
- January 2006
- April 2005
- December 2004
- November 2004
- December 1987
CATEGORIES
- About Us
- Advanced Biofuels Call to Action
- Aviation Fuel/Sustainable Aviation Fuel (SAF)
- BioChemicals/Renewable Chemicals
- BioRefineries/Renewable Fuel Production
- Business News/Analysis
- Cooking Fuel
- Education
- 30/30 Online Presentations
- Competitions, Contests
- Earth Day 2021
- Earth Day 2022
- Earth Day 2023
- Earth Day 2024
- Executive Training
- Featured Study Programs
- Instagram TikTok Short Videos
- Internships
- Just a Minute
- K-12 Activities
- Mechanics training
- Online Courses
- Podcasts
- Scholarships/Fellowships
- Teacher Resources
- Technical Training
- Technician Training
- University/College Programs
- Events
- Coming Events
- Completed Events
- More Coming Events
- Requests for Speakers, Presentations, Posters
- Requests for Speakers, Presentations, Posters Completed
- Webinars/Online
- Webinars/Online Completed; often available on-demand
- Federal Agency/Executive Branch
- Agency for International Development (USAID)
- Agriculture (USDA)
- Commerce Department
- Commodity Futures Trading Commission
- Congressional Budget Office
- Defense (DOD)
- Air Force
- Army
- DARPA (Defense Advance Research Projects Agency)
- Defense Logistics Agency
- Marines
- Navy
- Education Department
- Energy (DOE)
- Environmental Protection Agency
- Federal Energy Regulatory Commission (FERC)
- Federal Reserve System
- Federal Trade Commission
- Food and Drug Administration
- General Services Administration
- Government Accountability Office (GAO)
- Health and Human Services (HHS)
- Homeland Security
- Housing and Urban Development (HUD)
- Interior Department
- International Trade Commission
- Joint Office of Energy and Transportation
- Justice (DOJ)
- Labor Department
- National Academies of Sciences Engineering Medicine
- National Aeronautics and Space Administration
- National Oceanic and Atmospheric Administration
- National Research Council
- National Science Foundation
- National Transportation Safety Board (NTSB)
- Occupational Safety and Health Administration
- Overseas Private Investment Corporation
- Patent and Trademark Office
- Securities and Exchange Commission
- State Department
- Surface Transportation Board
- Transportation (DOT)
- Federal Aviation Administration
- National Highway Traffic Safety Administration (NHTSA)
- Pipeline and Hazardous Materials Safety Admin (PHMSA)
- Treasury Department
- U.S. Trade Representative (USTR)
- White House
- Federal Legislation
- Federal Litigation
- Federal Regulation
- Feedstocks
- Agriculture/Food Processing Residues nonfield crop
- Alcohol/Ethanol/Isobutanol
- Algae/Other Aquatic Organisms/Seaweed
- Atmosphere
- Carbon Dioxide (CO2)
- Field/Orchard/Plantation Crops/Residues
- Forestry/Wood/Residues/Waste
- hydrogen
- Manure
- Methane/Biogas
- methanol/bio-/renewable methanol
- Not Agriculture
- RFNBO (Renewable Fuels of Non-Biological Origin)
- Seawater
- Sugars
- water
- Funding/Financing/Investing
- grants
- Green Jobs
- Green Racing
- Health Concerns/Benefits
- Heating Oil/Fuel
- History of Advanced Biofuels
- Infrastructure
- Aggregation
- Biofuels Engine Design
- Biorefinery/Fuel Production Infrastructure
- Carbon Capture/Storage/Use
- certification
- Deliver Dispense
- Farming/Growing
- Precursors/Biointermediates
- Preprocessing
- Pretreatment
- Terminals Transport Pipelines
- International
- Abu Dhabi
- Afghanistan
- Africa
- Albania
- Algeria
- Angola
- Antarctica
- Argentina
- Armenia
- Aruba
- Asia
- Asia Pacific
- Australia
- Austria
- Azerbaijan
- Bahamas
- Bahrain
- Bangladesh
- Barbados
- Belarus
- Belgium
- Belize
- Benin
- Bermuda
- Bhutan
- Bolivia
- Bosnia and Herzegovina
- Botswana
- Brazil
- Brunei
- Bulgaria
- Burkina Faso
- Burundi
- Cambodia
- Cameroon
- Canada
- Caribbean
- Central African Republic
- Central America
- Chad
- Chile
- China
- Colombia
- Congo, Democratic Republic of
- Costa Rica
- Croatia
- Cuba
- Cyprus
- Czech Republic
- Denmark
- Dominican Republic
- Dubai
- Ecuador
- El Salvador
- Equatorial Guinea
- Eqypt
- Estonia
- Ethiopia
- European Union (EU)
- Fiji
- Finland
- France
- French Guiana
- Gabon
- Georgia
- Germany
- Ghana
- Global South
- Greece
- Greenland
- Guatemala
- Guinea
- Guyana
- Haiti
- Honduras
- Hong Kong
- Hungary
- Iceland
- India
- Indonesia
- Iran
- Iraq
- Ireland
- Israel
- Italy
- Ivory Coast
- Jamaica
- Japan
- Jersey
- Jordan
- Kazakhstan
- Kenya
- Korea
- Kosovo
- Kuwait
- Laos
- Latin America
- Latvia
- Lebanon
- Liberia
- Lithuania
- Luxembourg
- Macedonia
- Madagascar
- Malawi
- Malaysia
- Maldives
- Mali
- Malta
- Marshall Islands
- Mauritania
- Mauritius
- Mexico
- Middle East
- Monaco
- Mongolia
- Morocco
- Mozambique
- Myanmar/Burma
- Namibia
- Nepal
- Netherlands
- New Guinea
- New Zealand
- Nicaragua
- Niger
- Nigeria
- North Africa
- North Korea
- Northern Ireland
- Norway
- Oman
- Pakistan
- Panama
- Papua New Guinea
- Paraguay
- Peru
- Philippines
- Poland
- Portugal
- Qatar
- Romania
- Russia
- Rwanda
- Saudi Arabia
- Scotland
- Senegal
- Serbia
- Sierra Leone
- Singapore
- Slovakia
- Slovenia
- Solomon Islands
- South Africa
- South America
- South Korea
- South Sudan
- Southeast Asia
- Spain
- Sri Lanka
- Sudan
- Suriname
- Swaziland
- Sweden
- Switzerland
- Taiwan
- Tanzania
- Thailand
- Timor-Leste
- Togo
- Trinidad and Tobago
- Tunisia
- Turkey
- Uganda
- UK (United Kingdom)
- Ukraine
- United Arab Emirates UAE
- Uruguay
- Uzbekistan
- Vatican
- Venezuela
- Vietnam
- Wales
- Zambia
- Zanzibar
- Zimbabwe
- Marine/Boat Bio and Renewable Fuel/MGO/MDO/SMF
- Marketing/Market Forces and Sales
- Opinions
- Organizations
- Original Writing, Opinions Advanced Biofuels USA
- Policy
- Presentations
- Biofuels Digest Conferences
- DOE Conferences
- Bioeconomy 2017
- Bioenergy2015
- Biomass2008
- Biomass2009
- Biomass2010
- Biomass2011
- Biomass2012
- Biomass2013
- Biomass2014
- DOE Project Peer Review
- Other Conferences/Events
- R & D Focus
- Carbon Capture/Storage/Use
- Co-Products
- Feedstock
- Logistics
- Performance
- Process
- Vehicle/Engine/Motor/Aircraft/Boiler
- Yeast
- Railroad/Train/Locomotive Fuel
- Resources
- Books Web Sites etc
- Business
- Definition of Advanced Biofuels
- Find Stuff
- Government Resources
- Scientific Resources
- Technical Resources
- Tools/Decision-Making
- Rocket/Missile Fuel
- Sponsors
- States
- Alabama
- Alaska
- Arizona
- Arkansas
- California
- Colorado
- Connecticut
- Delaware
- Florida
- Georgia
- Hawai'i
- Idaho
- Illinois
- Indiana
- Iowa
- Kansas
- Kentucky
- Louisiana
- Maine
- Maryland
- Massachusetts
- Michigan
- Midwest
- Minnesota
- Mississippi
- Missouri
- Montana
- Native American tribal nation lands
- Nebraska
- Nevada
- New Hampshire
- New Jersey
- New Mexico
- New York
- North Carolina
- North Dakota
- Ohio
- Oklahoma
- Oregon
- Pennsylvania
- Puerto Rico
- Rhode Island
- South Carolina
- South Dakota
- Tennessee
- Texas
- Utah
- Vermont
- Virginia
- Washington
- Washington DC
- West Coast
- West Virginia
- Wisconsin
- Wyoming
- Sustainability
- Uncategorized
- What You Can Do
tags
© 2008-2023 Copyright Advanced BioFuels USA. All Rights reserved.
Comments are closed.