by Kristen Mally Dean (Argonne National Laboratory) Decarbonizing agriculture is critical for the U.S. to reach net zero emissions by 2050. A new data-driven approach looks at practices that are good for the earth and profitable for farmers. -- The world relies on American farmers to do much more than set its tables. In addition to producing food for people and animals, American farmers produce feedstocks for biofuel production.
“We want to give farmers, regional planners and others in agricultural management a tool to calculate how to use land sustainably and get the most value out of the land, which furthers both profitability and environmental goals.” — Troy Hawkins, group leader of fuels and products in Argonne’s Energy Systems and Infrastructure Analysis division
Sustainable intensification is a two-prong approach many think could help. It tries to optimize land use and management practices for maximum farmland productivity at the same time it tries to minimize associated environmental impact. The trick is finding the right balance between the two objectives.
Scientists who specialize in agroecosystems modeling and life-cycle analysis (LCA) from Colorado State University (CSU) and the U.S. Department of Energy’s (DOE) Argonne National Laboratory took a new analytic approach to the issue in a recent study of corn and soy farming in Iowa. They co-authored an article, “A multi-product landscape life-cycle assessment approach for evaluating local climate mitigation potential,” in the June 20 issue of the Journal of Cleaner Production.
“The concept of sustainable intensification of farming was applied into more broadscale landscape application,” said one of the article’s co-authors, Hoyoung Kwon, a principal environmental scientist in Argonne’s Energy Systems and Infrastructure Analysis (ESIA) division. “We considered productivity and GHG emissions, attempted to optimize land management tactics and products, and investigated different trade-offs that improve the land and land productivity.”
Many farms today are large, industrial farms that are high-tech and rely on high resolution data. Energy systems scientists at Argonne and CSU are studying sustainable intensification strategies to help them make profitable decisions while also reducing GHG emissions. (Image by Shutterstock/Saverio blasi.)
For example, farmers can clear and repurpose corn crop residue (or “stover”) for biofuel, but a percentage of stover can remain in the soil for valuable nutrient and carbon sources for future crops. Farmers can plant cover crops during the winter (or “fallow”) season, to supplement removed stover. The authors took into account energy, which has an emissions cost of planting of cover crops to holistically address net benefits of stover removal and cover crop planting. Farmers can also reduce how much land they till after a growing season ends, which lessens decay and reduces the amount of CO2 that emanates from the soil. However, the farmer has to till some of the land to be ready for the next growing season.
While some farmers already follow one or even all three of these practices, the scientists from Argonne believe a better understanding of their impact will motivate more to do so, for real benefit.
“Our approach gives a holistic perspective and looks at the perspective of the farmer: What are all the products that can be produced on the land and what are the sustainability benefits?” said co-author Troy Hawkins, group leader of fuels and products in Argonne’s ESIA division. “Farming can be a risky, low-margin exercise. Profitability will always be a primary focus. However, sustainability has value that may be unrecognized. How can we put all that together with changes to land management practices to make farming more sustainable and improve farmers’ costs?”
At the end of the growing season, integrated approaches that include winter cover cropping and/or tillage intensity reduction would increase carbon in the soil, improve farm profitability and mitigate more GHGs, according to a new study by energy systems scientists at Argonne and CSU. (Image by Shutterstock/lourencolf.)
The scientists looked at the trade-offs and synergies between sustainable intensification and carbon-sequestering conservation measures in a real-world scenario. They used two models — DayCent and the Greenhouse Gases, Regulated Emissions, and Energy Use in Technologies (GREET) LCA — to evaluate a farming area upstream of Des Moines, Iowa.
The DayCent model represents daily flows of carbon, nitrogen and water between the atmosphere, vegetation and soil in natural and agricultural ecosystems. The scientists relied on it to evaluate GHG emissions in corn ethanol production and the effects of residue harvest.
They used GREET to account for emissions associated with farm operations and the use of harvested corn grain, soybean and corn stover as feedstocks for biofuel production. GREET is widely used across industries to evaluate energy consumption, GHG emissions, air pollutant emissions and water consumption associated with biofuel supply chains and other transport and energy technologies. Fellow co-author Michael Wang, Argonne’s interim division director for energy systems and Infrastructure, is a primary architect of GREET.
According to the study, harvesting 30% of the corn stover for biofuel production would increase farm revenues, double net profitability and increase overall biofuel production from the landscape by 17–20%. Removal of the stover would also mitigate GHGs somewhat, but it reduced the baseline amount of good carbon in the soil by 40%. In comparison, integrated approaches that include winter cover cropping and/or tillage intensity reduction would increase carbon in the soil, improve farm profitability and mitigate more GHGs.
“We focused on corn and soy but our approach could be extended to other crops,” said Hawkins. “Many farms today are large, industrial farms that are high-tech and rely much more on high resolution data. We want to give farmers, regional planners and others in agricultural management a tool to calculate how to use land sustainably and get the most value out of the land. This will further both profitability and environmental goals.”
The work was supported, in part, by DOE’s Bioenergy Technologies Office within the Office of Energy Efficiency and Renewable Energy.
The Office of Energy Efficiency and Renewable Energy’s (EERE) mission is to accelerate the research, development, demonstration, and deployment of technologies and solutions to equitably transition America to net-zero greenhouse gas emissions economy-wide by no later than 2050, and ensure the clean energy economy benefits all Americans, creating good paying jobs for the American people — especially workers and communities impacted by the energy transition and those historically underserved by the energy system and overburdened by pollution.
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.
The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science. READ MORE
- Agricultural Efforts to Curb Methane Emissions Continue to Grow (Solutions from the Land)
- Reducing Methane From Livestock Is Critical for Stabilizing the Climate, but Congress Continues to Block Farms From Reporting Emissions Anyway -- A long standing pattern of letting livestock producers off the hook continues, even as billions pour into the industry. (Inside Climate News)
An unfortunate consequence of this effort to reduce methane is discussion – though narrow in scope to date – that targets the livestock industry for cutbacks. A paper issued by the Changing Markets Foundation, a European based organization that characterizes itself as a proponent of using markets to meet sustainability challenges, contends that if the EU can persuade 10 percent of its citizens to switch to diets containing less meat and dairy, a 34-percent reduction in methane emissions could be reached.
It’s a shoot-from-the-hip proposition from an organization that fails to understand any move to reduce the number of animals as a way of reducing GHG emissions will only displace meat, egg and dairy production to other countries that have even higher GHG emissions compared to EU agriculture. Furthermore, such a wrong-headed move would have the unintended consequence of reducing important and critically needed sources of protein and nutrients from EU diets.
The report acknowledges that methane emissions from EU agriculture have fallen 4 percent in recent years. That number is expected to improve as more and more livestock operators adopt climate-conscious practices, such as using high-quality feed that reduces methane released from enteric fermentation, as well as managing manure to reduce the release of methane and nitrous oxide, including covering manure storage facilities.
Frank Mitloehner, a professor and air quality Extension specialist with the University of California, says that when a gas such as methane – known as a flow gas – is emitted, it is stagnant and an equal amount of the gas is destroyed at the same rate that it is put into the atmosphere. For that reason, he said, it is possible to reduce warming and other impacts to the climate by reducing the amount of methane produced.
Efforts to reduce methane emissions by livestock operators are paying off, with releases falling in manner reflective of a decrease in dairy cows, which now number some 9 million compared to 25 million a decade ago. Even with fewer numbers, the sector continues to produce the same amount of dairy products that it did with nearly three times fewer animals.
In looking at the global methane picture, it’s important to remember that the world’s three largest emitters – China, Russia and India – have yet to make a commitment to reducing their release of this potent GHG. Together, they make up about one-third of all methane emissions. While U.S. officials said last year that Russia had shown interest in joining the methane-reduction effort, that was before war in Ukraine broke out.
Here in the United States according to the White House, the federal government is taking a different approach embracing the expansion of voluntary adoption of climate-smart agriculture practices that will reduce methane emissions from key agriculture sources by incentivizing the deployment of improved manure management systems, anaerobic digesters, new livestock feeds, composting, and other practices.
Farmers, ranchers and forestland owners are showing they are taking seriously the threats posed by a changing climate. Strong and effective efforts in the agriculture sector – and particularly among livestock operators – are showing success in bringing down methane emissions, all while simultaneous providing ecosystem service benefits. USDA’s approach of spurring producers to voluntarily adopt the management practices and systems that reduce their methane footprint will have significantly better results than mandating measures that fail to recognize each operation’s location, means of production and its net benefits to society. READ MORE
More than 50,000 articles in our online library!
Use the categories and tags listed below to access the nearly 50,000 articles indexed on this website.
Advanced Biofuels USA Policy Statements and Handouts!
- For Kids: Carbon Cycle Puzzle Page
- Why Ethanol? Why E85?
- Just A Minute 3-5 Minute Educational Videos
- 30/30 Online Presentations
- “Disappearing” Carbon Tax for Non-Renewable Fuels
- What’s the Difference between Biodiesel and Renewable (Green) Diesel? 2020 revision
- How to De-Fossilize Your Fleet: Suggestions for Fleet Managers Working on Sustainability Programs
- New Engine Technologies Could Produce Similar Mileage for All Ethanol Fuel Mixtures
- Action Plan for a Sustainable Advanced Biofuel Economy
- The Interaction of the Clean Air Act, California’s CAA Waiver, Corporate Average Fuel Economy Standards, Renewable Fuel Standards and California’s Low Carbon Fuel Standard
- Latest Data on Fuel Mileage and GHG Benefits of E30
- What Can I Do?
Donate
DonateARCHIVES
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- June 2007
- February 2007
- January 2007
- October 2006
- April 2006
- January 2006
- April 2005
- December 2004
- November 2004
- December 1987
CATEGORIES
- About Us
- Advanced Biofuels Call to Action
- Aviation Fuel/Sustainable Aviation Fuel (SAF)
- BioChemicals/Renewable Chemicals
- BioRefineries/Renewable Fuel Production
- Business News/Analysis
- Cooking Fuel
- Education
- 30/30 Online Presentations
- Competitions, Contests
- Earth Day 2021
- Earth Day 2022
- Earth Day 2023
- Earth Day 2024
- Executive Training
- Featured Study Programs
- Instagram TikTok Short Videos
- Internships
- Just a Minute
- K-12 Activities
- Mechanics training
- Online Courses
- Podcasts
- Scholarships/Fellowships
- Teacher Resources
- Technical Training
- Technician Training
- University/College Programs
- Events
- Coming Events
- Completed Events
- More Coming Events
- Requests for Speakers, Presentations, Posters
- Requests for Speakers, Presentations, Posters Completed
- Webinars/Online
- Webinars/Online Completed; often available on-demand
- Federal Agency/Executive Branch
- Agency for International Development (USAID)
- Agriculture (USDA)
- Commerce Department
- Commodity Futures Trading Commission
- Congressional Budget Office
- Defense (DOD)
- Air Force
- Army
- DARPA (Defense Advance Research Projects Agency)
- Defense Logistics Agency
- Marines
- Navy
- Education Department
- Energy (DOE)
- Environmental Protection Agency
- Federal Energy Regulatory Commission (FERC)
- Federal Reserve System
- Federal Trade Commission
- Food and Drug Administration
- General Services Administration
- Government Accountability Office (GAO)
- Health and Human Services (HHS)
- Homeland Security
- Housing and Urban Development (HUD)
- Interior Department
- International Trade Commission
- Joint Office of Energy and Transportation
- Justice (DOJ)
- Labor Department
- National Academies of Sciences Engineering Medicine
- National Aeronautics and Space Administration
- National Oceanic and Atmospheric Administration
- National Research Council
- National Science Foundation
- National Transportation Safety Board (NTSB)
- Occupational Safety and Health Administration
- Overseas Private Investment Corporation
- Patent and Trademark Office
- Securities and Exchange Commission
- State Department
- Surface Transportation Board
- Transportation (DOT)
- Federal Aviation Administration
- National Highway Traffic Safety Administration (NHTSA)
- Pipeline and Hazardous Materials Safety Admin (PHMSA)
- Treasury Department
- U.S. Trade Representative (USTR)
- White House
- Federal Legislation
- Federal Litigation
- Federal Regulation
- Feedstocks
- Agriculture/Food Processing Residues nonfield crop
- Alcohol/Ethanol/Isobutanol
- Algae/Other Aquatic Organisms/Seaweed
- Atmosphere
- Carbon Dioxide (CO2)
- Field/Orchard/Plantation Crops/Residues
- Forestry/Wood/Residues/Waste
- hydrogen
- Manure
- Methane/Biogas
- methanol/bio-/renewable methanol
- Not Agriculture
- RFNBO (Renewable Fuels of Non-Biological Origin)
- Seawater
- Sugars
- water
- Funding/Financing/Investing
- grants
- Green Jobs
- Green Racing
- Health Concerns/Benefits
- Heating Oil/Fuel
- History of Advanced Biofuels
- Infrastructure
- Aggregation
- Biofuels Engine Design
- Biorefinery/Fuel Production Infrastructure
- Carbon Capture/Storage/Use
- certification
- Deliver Dispense
- Farming/Growing
- Precursors/Biointermediates
- Preprocessing
- Pretreatment
- Terminals Transport Pipelines
- International
- Abu Dhabi
- Afghanistan
- Africa
- Albania
- Algeria
- Angola
- Antarctica
- Argentina
- Armenia
- Aruba
- Asia
- Asia Pacific
- Australia
- Austria
- Azerbaijan
- Bahamas
- Bahrain
- Bangladesh
- Barbados
- Belarus
- Belgium
- Belize
- Benin
- Bermuda
- Bhutan
- Bolivia
- Bosnia and Herzegovina
- Botswana
- Brazil
- Brunei
- Bulgaria
- Burkina Faso
- Burundi
- Cambodia
- Cameroon
- Canada
- Caribbean
- Central African Republic
- Central America
- Chad
- Chile
- China
- Colombia
- Congo, Democratic Republic of
- Costa Rica
- Croatia
- Cuba
- Cyprus
- Czech Republic
- Denmark
- Dominican Republic
- Dubai
- Ecuador
- El Salvador
- Equatorial Guinea
- Eqypt
- Estonia
- Ethiopia
- European Union (EU)
- Fiji
- Finland
- France
- French Guiana
- Gabon
- Georgia
- Germany
- Ghana
- Global South
- Greece
- Greenland
- Guatemala
- Guinea
- Guyana
- Haiti
- Honduras
- Hong Kong
- Hungary
- Iceland
- India
- Indonesia
- Iran
- Iraq
- Ireland
- Israel
- Italy
- Ivory Coast
- Jamaica
- Japan
- Jersey
- Jordan
- Kazakhstan
- Kenya
- Korea
- Kosovo
- Kuwait
- Laos
- Latin America
- Latvia
- Lebanon
- Liberia
- Lithuania
- Luxembourg
- Macedonia
- Madagascar
- Malawi
- Malaysia
- Maldives
- Mali
- Malta
- Marshall Islands
- Mauritania
- Mauritius
- Mexico
- Middle East
- Monaco
- Mongolia
- Morocco
- Mozambique
- Myanmar/Burma
- Namibia
- Nepal
- Netherlands
- New Guinea
- New Zealand
- Nicaragua
- Niger
- Nigeria
- North Africa
- North Korea
- Northern Ireland
- Norway
- Oman
- Pakistan
- Panama
- Papua New Guinea
- Paraguay
- Peru
- Philippines
- Poland
- Portugal
- Qatar
- Romania
- Russia
- Rwanda
- Saudi Arabia
- Scotland
- Senegal
- Serbia
- Sierra Leone
- Singapore
- Slovakia
- Slovenia
- Solomon Islands
- South Africa
- South America
- South Korea
- South Sudan
- Southeast Asia
- Spain
- Sri Lanka
- Sudan
- Suriname
- Swaziland
- Sweden
- Switzerland
- Taiwan
- Tanzania
- Thailand
- Timor-Leste
- Togo
- Trinidad and Tobago
- Tunisia
- Turkey
- Uganda
- UK (United Kingdom)
- Ukraine
- United Arab Emirates UAE
- Uruguay
- Uzbekistan
- Vatican
- Venezuela
- Vietnam
- Wales
- Zambia
- Zanzibar
- Zimbabwe
- Marine/Boat Bio and Renewable Fuel/MGO/MDO/SMF
- Marketing/Market Forces and Sales
- Opinions
- Organizations
- Original Writing, Opinions Advanced Biofuels USA
- Policy
- Presentations
- Biofuels Digest Conferences
- DOE Conferences
- Bioeconomy 2017
- Bioenergy2015
- Biomass2008
- Biomass2009
- Biomass2010
- Biomass2011
- Biomass2012
- Biomass2013
- Biomass2014
- DOE Project Peer Review
- Other Conferences/Events
- R & D Focus
- Carbon Capture/Storage/Use
- Co-Products
- Feedstock
- Logistics
- Performance
- Process
- Vehicle/Engine/Motor/Aircraft/Boiler
- Yeast
- Railroad/Train/Locomotive Fuel
- Resources
- Books Web Sites etc
- Business
- Definition of Advanced Biofuels
- Find Stuff
- Government Resources
- Scientific Resources
- Technical Resources
- Tools/Decision-Making
- Rocket/Missile Fuel
- Sponsors
- States
- Alabama
- Alaska
- Arizona
- Arkansas
- California
- Colorado
- Connecticut
- Delaware
- Florida
- Georgia
- Hawai'i
- Idaho
- Illinois
- Indiana
- Iowa
- Kansas
- Kentucky
- Louisiana
- Maine
- Maryland
- Massachusetts
- Michigan
- Midwest
- Minnesota
- Mississippi
- Missouri
- Montana
- Native American tribal nation lands
- Nebraska
- Nevada
- New Hampshire
- New Jersey
- New Mexico
- New York
- North Carolina
- North Dakota
- Ohio
- Oklahoma
- Oregon
- Pennsylvania
- Puerto Rico
- Rhode Island
- South Carolina
- South Dakota
- Tennessee
- Texas
- Utah
- Vermont
- Virginia
- Washington
- Washington DC
- West Coast
- West Virginia
- Wisconsin
- Wyoming
- Sustainability
- Uncategorized
- What You Can Do
tags
© 2008-2023 Copyright Advanced BioFuels USA. All Rights reserved.
Comments are closed.