Advanced Biofuels USA: promoting the understanding, development and use of advanced biofuels around the world.

Call to Action for a Truly Sustainable Renewable Future
August 8, 2013 – 5:07 pm | No Comment

-Include high octane/high ethanol Regular Grade fuel in EPA Tier 3 regulations.
-Use a dedicated, self-reducing non-renewable carbon user fee to fund renewable energy R&D.
-Start an Apollo-type program to bring New Ideas to sustainable biofuel and …

Read the full story »
Business News/Analysis

Federal Legislation

Political news and views from Capitol Hill.

More Coming Events

Conferences and Events List in Addition to Coming Events Carousel (above)

Original Writing, Opinions Advanced Biofuels USA


Home » Energy, Federal Agency, Feedstocks, Field/Orchard/Plantation Crops/Residues, Forestry/Wood, grants, Iowa, Process, R & D Focus, University/College Programs

What Happened? Pyrolysis Breakthrough Could Cut Drop-In Biofuels Cost to $2.58 per Gallon

Submitted by on March 13, 2018 – 11:04 amNo Comment

by Jim Lane (Biofuels Digest)  We have a breakthrough in pyrolysis to report today that could reduce the estimated cost of producing fuel from $3.27 per gallon to $2.58 per gallon.

And no one quite understands how the new process works — but it works.

“What we have achieved is process intensification – multi-fold increases in biomass throughput for a given size reactor – while preserving oil yield,” said Iowa State University’s Robert Brown, the Godfatha of catalytic pyrolysis himself.

Iowa State engineers call the process “autothermal pyrolysis.” The Iowa State University Research Foundation has applied for patent protection on the technology and has licensed it to Easy Energy Systems of Mankato, Minnesota for commercial use.

As the Iowa State engineers continued to study autothermal pyrolysis, graduate student Joseph Polin decided to substitute inexpensive air for the pure oxygen used in earlier tests.

Polin found that to keep air-fuel ratios similar to the experiments with pure oxygen, he needed to feed biomass into the reactor five times faster. Brown was initially skeptical the reactor was big enough to handle so much more biomass. But it did.

“The epiphany was that biomass throughput for a pyrolysis reactor was limited by our ability to get heat through the walls of the reactor,” Brown said. “By burning the biomass internally to generate the energy needed to drive pyrolysis, we eliminated the heat transfer bottleneck, allowing us to open up the throttle, so to speak, on our reactor.”

No one can quite figure out how it works.

And that’s going to inhibit the design of larger-scale reactors. Specifically, plans for two autothermal demonstration plants capable of processing 50 tons of biomass per day could really use, as Brown put it, “a model that predicts the performance of these big reactors.”

Here’s what it isn’t
Brown thought carbon monoxide and methane known to exit a conventional pyrolyzer might be burning during autothermal pyrolysis. Iowa State graduate student Chad Peterson proved him wrong using a simple computer model that demonstrated pyrolysis temperatures are too low to ignite these gases.

DOE steps in
To figure out what we have, the U.S. Department of Energy has come forward with a two-year, $854,039 grant to an Iowa State team to study autothermal pyrolysis and develop software tools to help design other kinds of autothermal processes. The grant from the department’s Advanced Manufacturing Office is part of $35 million awarded to 24 research projects across the country. Final details of the Iowa State project are being negotiated.

More on the story

Deep StabilizationThe Digest’s 2017 Multi-Slide Guide to fast pyrolysis and bio-oil upgrading

The King of BiofuelsThe Digest’s 2017 Multi-Slide Guide to pyrolysis’ progress and prospects, Pt 2

The King of Biofuels: The Digest’s 2017 Multi-Slide Guide to pyrolysis’ progress and prospects, Pt 1

Catalysis on a Hot Tin RoofThe Digest’s 2017 Multi-Slide Guide to the ChemCatBio consortium


Related Post

Tags: , , , , , , ,

Comments are closed.