Toxic Algal Blooms of Today Could Become the Biofuels, Fertilizers and Antibiotics of Tomorrow
by Steve Brachmann (IP Watchdog) … Last March, researchers from Western Michigan University (WMU) made a presentation at that year’s national meeting of the American Chemical Society (ACS) on how algae could be transformed into biofuels and fertilizer. The WMU system was optimized for use near small farms, sources of much of the agricultural runoff which contribute to algal blooms in bodies of water. A 3D printed substrate developed by the research team grows algae in a controlled environment. The algae, which can be produced at a rate of two to eight times faster than ethanol feedstocks, can be collected for conversion into biofuels or fertilizer.
…
Additional study into the potential use of cyanobacteria algae as a feedstock for biofuel was being conducted as part of lake pollution research taking place at the University of Buffalo. In 2013, an environmental engineering team had constructed a vacuum system incorporating two 40-foot flumes to pump algae-laden water out of Lake Erie. Although the project was largely focused on water quality remediation, the team was also constructing a database of the physical properties of blue-green algae which could be used to determine the commercial properties of cyanobacteria.
Not far down the New York State Thruway, the Rochester Institute of Technology (RIT) recently engaged in a three-month pilot project focused on growing microalgae in controlled conditions as a renewable energy feedstock. Conducted in coordination with local renewable energy firm Synergy Biogas, RIT researchers worked with an anaerobic digester in Covington, NY, capable of treating up to 52,000 gallons of wastewater each day. The team is looking to see how effective the microalgae is at converting digested biomass from agricultural runoff. Lab results show that the technology was capable of reducing phosphorus pollution from runoff by 90 percent, down to 0.1 parts per million. The algae grown by the team planned to convert microalgae into ethanol and biodiesel feedstock by isolating the lipids. Further conversion techniques using the anaerobic digester would further extract lipids and carbohydrates for fertilizer.
…
In late January, the ACS journal Industrial & Engineering Chemistry Research published a paper resulting from a joint research project between a pair of Mexican universities. The paper suggests the use of algae production to reduce carbon dioxide (CO2) emissions in flue gas from industrial facilities. The system, developed by researchers from both the Universidad Autónoma de Sinaloa and the Universidad Michoacana de San Nicolás de Hidalgo, is primarily focused at reducing CO2 emissions. The system also had the effect of reducing the costs of growing algae for biofuel feedstocks by 90 percent, although researchers still felt that an algae-based biorefinery was still economically unfeasible at that time. READ MORE