(National Academies of Sciences, Engineering and Medicine) Distinction Between Genetic Engineering and Conventional Plant Breeding Becoming Less Clear, Says New Report on GE Crops -- An extensive study by the National Academies of Sciences, Engineering, and Medicine has found that new technologies in genetic engineering and conventional breeding are blurring the once clear distinctions between these two crop-improvement approaches. In addition, while recognizing the inherent difficulty of detecting subtle or long-term effects on health or the environment, the study committee found no substantiated evidence of a difference in risks to human health between current commercially available genetically engineered (GE) crops and conventionally bred crops, nor did it find conclusive cause-and-effect evidence of environmental problems from the GE crops. However, evolved resistance to current GE characteristics in crops is a major agricultural problem.
A tiered process for regulating new crop varieties should focus on a plant’s characteristics rather than the process by which it was developed, the committee recommends in its report. New plant varieties that have intended or unintended novel characteristics that may present potential hazards should undergo safety testing -- regardless of whether they were developed using genetic engineering or conventional breeding techniques. New “-omics” technologies, which dramatically increase the ability to detect even small changes in plant characteristics, will be critical to detecting unintended changes in new crop varieties.
The committee used evidence accumulated over the past two decades to assess purported negative effects and purported benefits of current commercial GE crops. Since the 1980s, biologists have used genetic engineering to produce particular characteristics in plants such as longer shelf life for fruit, higher vitamin content, and resistance to diseases. However, the only genetically engineered characteristics that have been put into widespread commercial use are those that allow a crop to withstand the application of a herbicide or to be toxic to insect pests.
The fact that only two characteristics have been widely used is one of the reasons the committee avoided sweeping, generalized statements about the benefits and risks of GE crops. Claims about the effects of existing GE crops often assume that those effects would apply to the genetic engineering process generally, but different characteristics are likely to have different effects. A genetically engineered characteristic that alters the nutritional content of a crop, for example, is unlikely to have the same environmental or economic effects as a characteristic for herbicide resistance.
The committee examined almost 900 research and other publications on the development, use, and effects of genetically engineered characteristics in maize (corn), soybean, and cotton, which account for almost all commercial GE crops to date. “We dug deeply into the literature to take a fresh look at the data on GE and conventionally bred crops,” said committee chair Fred Gould, University Distinguished Professor of Entomology and co-director of the Genetic Engineering and Society Center at North Carolina State University. In addition, the committee heard from 80 diverse speakers at three public meetings and 15 public webinars, and read more than 700 comments from members of the public to broaden its understanding of issues surrounding GE crops.
In releasing its report, the committee established a website that enables users to look up the places in the report that address comments received by the committee from the public, and also find the reasoning behind the report’s main findings and recommendations. “The committee focused on listening carefully and responding thoughtfully to members of the public who have concerns about GE crops and foods, as well as those who feel that there are great benefits to be had from GE crops,” said Gould.
Effects on human health. The committee carefully searched all available research studies for persuasive evidence of adverse health effects directly attributable to consumption of foods derived from GE crops but found none. Studies with animals and research on the chemical composition of GE foods currently on the market reveal no differences that would implicate a higher risk to human health and safety than from eating their non-GE counterparts. Though long-term epidemiological studies have not directly addressed GE food consumption, available epidemiological data do not show associations between any disease or chronic conditions and the consumption of GE foods.
There is some evidence that GE insect-resistant crops have had benefits to human health by reducing insecticide poisonings. In addition, several GE crops are in development that are designed to benefit human health, such as rice with increased beta-carotene content to help prevent blindness and death caused by vitamin A deficiencies in some developing nations.
Effects on the environment. The use of insect-resistant or herbicide-resistant crops did not reduce the overall diversity of plant and insect life on farms, and sometimes insect-resistant crops resulted in increased insect diversity, the report says. While gene flow – the transfer of genes from a GE crop to a wild relative species – has occurred, no examples have demonstrated an adverse environmental effect from this transfer. Overall, the committee found no conclusive evidence of cause-and-effect relationships between GE crops and environmental problems. However, the complex nature of assessing long-term environmental changes often made it difficult to reach definitive conclusions.
Effects on agriculture. The available evidence indicates that GE soybean, cotton, and maize have generally had favorable economic outcomes for producers who have adopted these crops, but outcomes have varied depending on pest abundance, farming practices, and agricultural infrastructure. Although GE crops have provided economic benefits to many small-scale farmers in the early years of adoption, enduring and widespread gains will depend on such farmers receiving institutional support, such as access to credit, affordable inputs such as fertilizer, extension services, and access to profitable local and global markets for the crops.
Evidence shows that in locations where insect-resistant crops were planted but resistance-management strategies were not followed, damaging levels of resistance evolved in some target insects. If GE crops are to be used sustainably, regulations and incentives are needed so that more integrated and sustainable pest-management approaches become economically feasible. The committee also found that in many locations some weeds had evolved resistance to glyphosate, the herbicide to which most GE crops were engineered to be resistant. Resistance evolution in weeds could be delayed by the use of integrated weed-management approaches, says the report, which also recommends further research to determine better approaches for weed resistance management.
Insect-resistant GE crops have decreased crop loss due to plant pests. However, the committee examined data on overall rates of increase in yields of soybean, cotton, and maize in the U.S. for the decades preceding introduction of GE crops and after their introduction, and there was no evidence that GE crops had changed the rate of increase in yields. It is feasible that emerging genetic-engineering technologies will speed the rate of increase in yield, but this is not certain, so the committee recommended funding of diverse approaches for increasing and stabilizing crop yield.
Regulation Should Focus on Novel Characteristics and Hazards
All technologies for improving plant genetics – whether GE or conventional -- can change foods in ways that could raise safety issues, the committee’s report notes. It is the product and not the process that should be regulated, the new report says, a point that has also been made in previous Academies reports.
In determining whether a new plant variety should be subject to safety testing, regulators should focus on the extent to which the novel characteristics of the plant variety (both intended and unintended) are likely to pose a risk to human health or the environment, the extent of uncertainty about the severity of potential harm, and the potential for human exposure – regardless of whether the plant was developed using genetic-engineering or conventional-breeding processes. ” –omics” technologies will be critical in enabling these regulatory approaches.
The United States’ current policy on new plant varieties is in theory a “product” based policy, but USDA and EPA determine which plants to regulate at least partially based on the process by which they are developed. But a process-based approach is becoming less and less technically defensible as the old approaches to genetic engineering become less novel and as emerging processes — such as genome editing and synthetic biology — fail to fit current regulatory categories of genetic engineering, the report says.
The distinction between conventional breeding and genetic engineering is becoming less obvious, says the report, which also reviews emerging technologies. For example, genome editing technologies such as CRISPR/Cas9 can now be used to make a genetic change by substituting a single nucleotide in a specific gene; the same change can be made by a method that uses radiation or chemicals to induce mutations and then uses genomic screening to identify plants with the desired mutation – an approach that is considered to be conventional breeding by most national regulatory systems. Some emerging genetic engineering technologies have the potential to create novel plant varieties that are hard to distinguish genetically from plants produced through conventional breeding or processes that occur in nature. A plant variety that is conventionally bred to be resistant to a herbicide and one that is genetically engineered to be resistant to the same herbicide can be expected to have similar associated benefits and risks.
Regulating authorities should be proactive in communicating information to the public about how emerging genetic-engineering technologies or their products might be regulated and how new regulatory methods may be used. They should also proactively seek input from the public on these issues. Not all issues can be answered by science alone, the report says. Policy regarding GE crops has scientific, legal, and social dimensions.
For example, on the basis of its review of the evidence on health effects, the committee does not believe that mandatory labeling of foods with GE content is justified to protect public health, but it noted that the issue involves social and economic choices that go beyond technical assessments of health or environmental safety; ultimately, it involves value choices that technical assessments alone cannot answer.
The study was sponsored by the Burroughs Wellcome Fund, the Gordon and Betty Moore Foundation, the New Venture Fund, and the U.S. Department of Agriculture, with additional support from the National Academy of Sciences. The National Academies of Sciences, Engineering, and Medicine are private, nonprofit institutions that provide independent, objective analysis and advice to the nation to solve complex problems and inform public policy decisions related to science, technology, and medicine. They operate under an 1863 congressional charter to the National Academy of Sciences, signed by President Lincoln. For more information, visit http://national-academies.org. A roster follows.
Additional Resources
This consensus report examines a range of questions and opinions about the economic, agronomic, health, safety, or other effects of genetically engineered (GE) crops and food. Claims and research that extol both the benefits and risks of GE crops have created a confusing landscape for the public and for policy makers. This report is intended to provide an independent, objective examination of what has been learned since the introduction of GE crops, based on current evidence. READ MORE WATCH VIDEO
More than 50,000 articles in our online library!
Use the categories and tags listed below to access the nearly 50,000 articles indexed on this website.
Advanced Biofuels USA Policy Statements and Handouts!
- For Kids: Carbon Cycle Puzzle Page
- Why Ethanol? Why E85?
- Just A Minute 3-5 Minute Educational Videos
- 30/30 Online Presentations
- “Disappearing” Carbon Tax for Non-Renewable Fuels
- What’s the Difference between Biodiesel and Renewable (Green) Diesel? 2020 revision
- How to De-Fossilize Your Fleet: Suggestions for Fleet Managers Working on Sustainability Programs
- New Engine Technologies Could Produce Similar Mileage for All Ethanol Fuel Mixtures
- Action Plan for a Sustainable Advanced Biofuel Economy
- The Interaction of the Clean Air Act, California’s CAA Waiver, Corporate Average Fuel Economy Standards, Renewable Fuel Standards and California’s Low Carbon Fuel Standard
- Latest Data on Fuel Mileage and GHG Benefits of E30
- What Can I Do?
Donate
DonateARCHIVES
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- June 2007
- February 2007
- January 2007
- October 2006
- April 2006
- January 2006
- April 2005
- December 2004
- November 2004
- December 1987
CATEGORIES
- About Us
- Advanced Biofuels Call to Action
- Aviation Fuel/Sustainable Aviation Fuel (SAF)
- BioChemicals/Renewable Chemicals
- BioRefineries/Renewable Fuel Production
- Business News/Analysis
- Cooking Fuel
- Education
- 30/30 Online Presentations
- Competitions, Contests
- Earth Day 2021
- Earth Day 2022
- Earth Day 2023
- Earth Day 2024
- Executive Training
- Featured Study Programs
- Instagram TikTok Short Videos
- Internships
- Just a Minute
- K-12 Activities
- Mechanics training
- Online Courses
- Podcasts
- Scholarships/Fellowships
- Teacher Resources
- Technical Training
- Technician Training
- University/College Programs
- Events
- Coming Events
- Completed Events
- More Coming Events
- Requests for Speakers, Presentations, Posters
- Requests for Speakers, Presentations, Posters Completed
- Webinars/Online
- Webinars/Online Completed; often available on-demand
- Federal Agency/Executive Branch
- Agency for International Development (USAID)
- Agriculture (USDA)
- Commerce Department
- Commodity Futures Trading Commission
- Congressional Budget Office
- Defense (DOD)
- Air Force
- Army
- DARPA (Defense Advance Research Projects Agency)
- Defense Logistics Agency
- Marines
- Navy
- Education Department
- Energy (DOE)
- Environmental Protection Agency
- Federal Energy Regulatory Commission (FERC)
- Federal Reserve System
- Federal Trade Commission
- Food and Drug Administration
- General Services Administration
- Government Accountability Office (GAO)
- Health and Human Services (HHS)
- Homeland Security
- Housing and Urban Development (HUD)
- Interior Department
- International Trade Commission
- Joint Office of Energy and Transportation
- Justice (DOJ)
- Labor Department
- National Academy of Sciences
- National Aeronautics and Space Administration
- National Oceanic and Atmospheric Administration
- National Research Council
- National Science Foundation
- National Transportation Safety Board (NTSB)
- Occupational Safety and Health Administration
- Overseas Private Investment Corporation
- Patent and Trademark Office
- Securities and Exchange Commission
- State Department
- Surface Transportation Board
- Transportation (DOT)
- Federal Aviation Administration
- National Highway Traffic Safety Administration (NHTSA)
- Pipeline and Hazardous Materials Safety Admin (PHMSA)
- Treasury Department
- U.S. Trade Representative (USTR)
- White House
- Federal Legislation
- Federal Litigation
- Federal Regulation
- Feedstocks
- Agriculture/Food Processing Residues nonfield crop
- Alcohol/Ethanol/Isobutanol
- Algae/Other Aquatic Organisms/Seaweed
- Atmosphere
- Carbon Dioxide (CO2)
- Field/Orchard/Plantation Crops/Residues
- Forestry/Wood/Residues/Waste
- hydrogen
- Manure
- Methane/Biogas
- methanol/bio-/renewable methanol
- Not Agriculture
- RFNBO (Renewable Fuels of Non-Biological Origin)
- Seawater
- Sugars
- water
- Funding/Financing/Investing
- grants
- Green Jobs
- Green Racing
- Health Concerns/Benefits
- Heating Oil/Fuel
- History of Advanced Biofuels
- Infrastructure
- Aggregation
- Biofuels Engine Design
- Biorefinery/Fuel Production Infrastructure
- Carbon Capture/Storage/Use
- certification
- Deliver Dispense
- Farming/Growing
- Precursors/Biointermediates
- Preprocessing
- Pretreatment
- Terminals Transport Pipelines
- International
- Abu Dhabi
- Afghanistan
- Africa
- Albania
- Algeria
- Angola
- Antarctica
- Argentina
- Armenia
- Aruba
- Asia
- Asia Pacific
- Australia
- Austria
- Azerbaijan
- Bahamas
- Bahrain
- Bangladesh
- Barbados
- Belarus
- Belgium
- Beliz
- Benin
- Bermuda
- Bhutan
- Bolivia
- Bosnia and Herzegovina
- Botswana
- Brazil
- Brunei
- Bulgaria
- Burkina Faso
- Burundi
- Cambodia
- Cameroon
- Canada
- Caribbean
- Central African Republic
- Central America
- Chad
- Chile
- China
- Colombia
- Congo, Democratic Republic of
- Costa Rica
- Croatia
- Cuba
- Cyprus
- Czech Republic
- Denmark
- Dominican Republic
- Dubai
- Ecuador
- El Salvador
- Equatorial Guinea
- Eqypt
- Estonia
- Ethiopia
- European Union (EU)
- Fiji
- Finland
- France
- French Guiana
- Gabon
- Georgia
- Germany
- Ghana
- Global South
- Greece
- Greenland
- Guatemala
- Guinea
- Guyana
- Haiti
- Honduras
- Hong Kong
- Hungary
- Iceland
- India
- Indonesia
- Iran
- Iraq
- Ireland
- Israel
- Italy
- Ivory Coast
- Jamaica
- Japan
- Jersey
- Jordan
- Kazakhstan
- Kenya
- Korea
- Kosovo
- Kuwait
- Laos
- Latin America
- Latvia
- Lebanon
- Liberia
- Lithuania
- Luxembourg
- Macedonia
- Madagascar
- Malawi
- Malaysia
- Maldives
- Mali
- Malta
- Marshall Islands
- Mauritania
- Mauritius
- Mexico
- Middle East
- Monaco
- Mongolia
- Morocco
- Mozambique
- Myanmar/Burma
- Namibia
- Nepal
- Netherlands
- New Guinea
- New Zealand
- Nicaragua
- Niger
- Nigeria
- North Africa
- North Korea
- Northern Ireland
- Norway
- Oman
- Pakistan
- Panama
- Papua New Guinea
- Paraguay
- Peru
- Philippines
- Poland
- Portugal
- Qatar
- Romania
- Russia
- Rwanda
- Saudi Arabia
- Scotland
- Senegal
- Serbia
- Sierra Leone
- Singapore
- Slovakia
- Slovenia
- Solomon Islands
- South Africa
- South America
- South Korea
- South Sudan
- Southeast Asia
- Spain
- Sri Lanka
- Sudan
- Suriname
- Swaziland
- Sweden
- Switzerland
- Taiwan
- Tanzania
- Thailand
- Timor-Leste
- Togo
- Trinidad and Tobago
- Tunisia
- Turkey
- Uganda
- UK (United Kingdom)
- Ukraine
- United Arab Emirates UAE
- Uruguay
- Uzbekistan
- Vatican
- Venezuela
- Vietnam
- Wales
- Zambia
- Zanzibar
- Zimbabwe
- Marine/Boat Bio and Renewable Fuel/MGO/MDO/SMF
- Marketing/Market Forces and Sales
- Opinions
- Organizations
- Original Writing, Opinions Advanced Biofuels USA
- Policy
- Presentations
- Biofuels Digest Conferences
- DOE Conferences
- Bioeconomy 2017
- Bioenergy2015
- Biomass2008
- Biomass2009
- Biomass2010
- Biomass2011
- Biomass2012
- Biomass2013
- Biomass2014
- DOE Project Peer Review
- Other Conferences/Events
- R & D Focus
- Carbon Capture/Storage/Use
- Co-Products
- Feedstock
- Logistics
- Performance
- Process
- Vehicle/Engine/Motor/Aircraft/Boiler
- Yeast
- Railroad/Train/Locomotive Fuel
- Resources
- Books Web Sites etc
- Business
- Definition of Advanced Biofuels
- Find Stuff
- Government Resources
- Scientific Resources
- Technical Resources
- Tools/Decision-Making
- Rocket/Missile Fuel
- Sponsors
- States
- Alabama
- Alaska
- Arizona
- Arkansas
- California
- Colorado
- Connecticut
- Delaware
- Florida
- Georgia
- Hawai'i
- Idaho
- Illinois
- Indiana
- Iowa
- Kansas
- Kentucky
- Louisiana
- Maine
- Maryland
- Massachusetts
- Michigan
- Midwest
- Minnesota
- Mississippi
- Missouri
- Montana
- Native American tribal nation lands
- Nebraska
- Nevada
- New Hampshire
- New Jersey
- New Mexico
- New York
- North Carolina
- North Dakota
- Ohio
- Oklahoma
- Oregon
- Pennsylvania
- Puerto Rico
- Rhode Island
- South Carolina
- South Dakota
- Tennessee
- Texas
- Utah
- Vermont
- Virginia
- Washington
- Washington DC
- West Coast
- West Virginia
- Wisconsin
- Wyoming
- Sustainability
- Uncategorized
- What You Can Do
tags
© 2008-2023 Copyright Advanced BioFuels USA. All Rights reserved.
Comments are closed.