Novel Mechanism in Bacterial-Fungal Symbiosis Could Have Biodiesel Production Applications
(Phys.Org/ DOE/Joint Genome Institute) … To learn more about how bacteria interact with fungi in a symbiotic relationship to support the biochemistries that could contribute to the development of alternate fuel sources, Cornell and DOE JGI researchers used a model bacterial-fungal system to reveal the mechanism for lipid production in oil-producing or oleaginous fungi.
…
Understanding how fungal-bacterial interactions influence lipid production in Mucoromycotina fungi offers insights into how these fungi might be harnessed for biodiesel production.
… In a Proceedings of the National Academy of Sciences paper published online December 12, 2016, researchers at Cornell University and the U.S. Department of Energy Joint Genome Institute (DOE JGI), a national user facility, reported on the mechanisms influencing the mutualistic relationship between the fungal plant pathogen Rhizopus microsporus and a Burkholderia endosymbiont. Rhizopus is a plant pathogen of crops including rice, sunflower, and maize, and it relies on the toxin produced by the endosymbiont bacteria. Their symbiotic relationship was discovered in 2005, and researchers expect more examples of fungal-bacterial mutualisms to be found now that they are being actively sought out. The Cornell team cultivated the fungi and isolated the endobacteria while the DOE JGI team sequenced, assembled and annotated the genomes of the host and non-host genomes as part of the DOE JGI’s 1000 Fungal Genomes project and other DOE JGI Community Science Projects.
The results indicate that the transition between symbiosis and antagonism between the bacteria and their fungal host is driven by a novel mechanism involving fungal lipid metabolism.
…
The work also lends bioenergy researchers insight into lipid metabolism in an oil-producing fungus, and how this can influence the nature of their interactions. READ MORE Abstract (Proceedings of the National Academy of Sciences)