New Candidate for Raw Material Synthesis through Gene Transfer
(Karlsruhe Institute of Technology/Phys.Org) Cyanobacteria hardly need any nutrients and use the energy of sunlight. Bathers are familiar with these microorganisms—often incorrectly called “blue-green algae”—as they often occur in waters. A group of researchers at the Karlsruhe Institute of Technology (KIT) has discovered that the multicellular species Phormidium lacuna can be genetically modified by natural transformation and could thus produce substances such as ethanol or hydrogen.
…
Since natural transformation has so far only been successful in unicellular cyanobacteria, it was assumed that it was an exclusive feature of unicellular species. The findings of the KIT research group show that the natural competence to take up extracellular DNA occurs more frequently in cyanobacteria than previously thought. In the online scientific publication PLOS ONE, they report for the first time on gene transfer for the Phormidium lacuna genus and on the natural transformation of a multicellular, filamentous cyanobacterium.
Contribution to Bio-Economy: Replacing Fossil Resources
For natural transformation, the cells must be in a physiological state, known as natural competence, so that the recipient cell can actively transport DNA into the cytoplasm. The scientists took advantage of the natural transformation and integrated new genetic information into the genome of Phormidium lacuna. The multicellular cyanobacteria, which obtain their energy from sunlight, offer the advantage of forming a biofilm and of growing in a high cell density that can be quickly removed. KIT scientists isolated several strains of this filamentously growing species from the North Sea and the Mediterranean Sea and sequenced the genome of one strain.
…
A possible future-oriented application would be to synthesize ethanol, hydrogen or lactate as well as other bioproducts in the cells and thus contribute to the bio-economy and to the change from an oil-based economy to a market economy based on sustainable resources. “Our vision is to use this technology to replace fossil resources,” says the biologist. READ MORE
Natural transformation of the filamentous cyanobacterium Phormidium lacuna (PLOS ONE)