Light-Based Chemistry Could Increase Energy Density of a Renewable Fuel
(Photonics/Los Alamos National Laboratory) Researchers at Los Alamos National Laboratory used photochemical [2 + 2] cycloaddition to upgrade biomass-derived acetone — common nail polish remover — to higher-mass hydrocarbons, and produced a product that can be blended with conventional jet fuel for more energy-efficient flying.
“We converted bio-derived acetone to isophorone and then used a UV lamp to convert it to a cyclobutane, a type of hydrocarbon with high-energy density for fuels applications,” researcher Courtney Ford Ryan said. “This process allows us to transform a natural product into a fuel additive, improving the performance of petroleum-based jet fuel.”
Acetone’s volatility precludes its direct use as a fuel. Also, acetone requires chemical upgrading to be suitable for introduction into the fuel supply, as it is capable of dissolving engine parts and O-rings. By upgrading the initial product to a cyclobutane, the researchers were able to generate a potentially safer and more energy-dense fuel, while reducing the hydrogen input required for upgrading a bio-derived feedstock.
The research was published in Sustainable Energy & Fuels (www.doi.org/10.1039/C9SE01014A). READ MORE