Advanced Biofuels USA: promoting the understanding, development and use of advanced biofuels around the world.

Call to Action for a Truly Sustainable Renewable Future
August 8, 2013 – 5:07 pm | No Comment

-Include high octane/high ethanol Regular Grade fuel in EPA Tier 3 regulations.
-Use a dedicated, self-reducing non-renewable carbon user fee to fund renewable energy R&D.
-Start an Apollo-type program to bring New Ideas to sustainable biofuel and …

Read the full story »
Business News/Analysis

Federal Legislation

Political news and views from Capitol Hill.

More Coming Events

Conferences and Events List in Addition to Coming Events Carousel (above)

Original Writing, Opinions Advanced Biofuels USA


Home » Brazil, Feedstock, Feedstocks, Field/Orchard/Plantation Crops/Residues, R & D Focus, UK (United Kingdom)

Less Chewing the Cud, More Greening the Fuel

Submitted by on January 12, 2018 – 2:49 pmNo Comment

(Phys.Org/Rothamsted Research)  … But now a multinational team of researchers, from the UK, Brazil and the US, has pinpointed a gene involved in the stiffening of cell walls whose suppression increased the release of sugars by up to 60%. Their findings are reported today in New Phytologist.

“The impact is potentially global as every country uses grass crops to feed animals and several biofuel plants around the world use this feedstock,” says Rowan Mitchell, a plant biologist at Rothamsted Research and the team’s co-leader.


Billions of tonnes of biomass from grass crops are produced every year, notes Mitchell, and a key trait is its digestibility, which determines how economic it is to produce biofuels and how nutritious it is for animals. Increased  stiffening, or feruloylation, reduces digestibility.

The findings are undoubtedly a boon in Brazil, where a burgeoning bioenergy industry produces ethanol from the non-food leftovers of other grass crops, such as maize stover and sugarcane residues, and from sugar cane grown as a dedicated energy crop. Increased efficiency of bioethanol production will help it to replace fossil fuel and reduce .

“Economically and environmentally, our livestock industry will benefit from more efficient foraging and our biofuels industry will benefit from biomass that needs fewer artificial enzymes to break it down during the hydrolysis process,” notes Molinari.  READ MORE   Abstract (Plant Physiology)

Researchers make grasses more digestible (Ethanol Producer Magazine)

Related Post

Tags: , , , , , ,

Comments are closed.