By Greg O'Neil and Chris Reddy (Woods Hole Oceanographic Institution) ... We took a closer look at a certain type of algae, which contain a class of fascinating and overlooked chemical compounds that most algae do not have. In a study published Jan. 26, 2015, in the American Chemical Society’s journal Energy & Fuels, we reported on a process to transform these compounds into components used in jet fuel.
Algae have been used before to make jet fuel and, more commonly, to make another type of fuel, biodiesel. But we have found a way to make both fuels, in parallel, from a single algae.
...
In the past decade, interest in algal-based fuels has bloomed. This is in part a response to the U.S. Environmental Protection Agency’s Renewable Fuels Standard program, which committed the United States to replacing 36 billion gallons of its transportation fuel with renewable fuel by 2022.
Algal biofuel production also has several positive attributes that, combined, have reignited the interest of researchers and entrepreneurs around the world. For one, unlike corn and other crops that people eat, algae wouldn’t affect food supplies and prices if it were diverted to make fuel. In addition, algae can be grown in high quantities per acre, on otherwise nonproductive, non-arable land, and in a wide variety of water sources (fresh, brackish, saline, and wastewater). Compared to burning fossil fuels, burning biofuels from algae results in a net reduction of heat-trapping carbon dioxide. And the production of algal biofuels can also yield valuable co-products, as we show in our new study.
A little hype has also attracted attention to algae-based biofuels. Proponents note that some algae produce far more fats and sugars than soybean and other land-based plants. By these numbers, they say, as little as 3 percent of U.S cropland dedicated to algae could produce biodiesel that could meet the nation’s transportation fuel needs. There’s a big assumption in those projections, however. The estimates are often based on knowing how fast and how fat algae grow in fishtank-size aquaria, with the results extrapolated to millions of acres. It remains untried and unknown whether algae can be grown economically at industrial scales as large as, say, Nebraska.
Beyond the chromatographic pale
For our research, we targeted algae called Isochrysis, which seemed like a good candidate for feedstock for fuel. It contains fair amounts of fats and grows well. It is already grown commercially for fish food, so many challenges associated with growing beyond fishtank-scale already have been achieved. Yet as far as we know, very little work has been done to explore its fuel potential.
There are at least two reasons for this. First, researchers screen hundreds of different types of algae for their biofuel potential. A former worker at a major chemical company once told us that researchers there had examined Isochrysis, but they passed on it because the oil extracted from it wasn’t a clear yellow liquid like soybean oil, but rather a near-black greasy gunk that looked relatively hard to work with.
A second reason is that biofuel prospectors typically have their eye on fatty acid methyl esters (FAMEs), compounds that make good biodiesel. The standard analytical tool used to find chemical compounds in substances is called gas chromatography. The technique takes a mixed bag of chemicals in algae and separates them into their constituent compounds, according to their different masses. The FAMEs that are produced from triglycerides generally contain anywhere from 14 to 20 carbons. Any FAMEs in algae separate out after 30 to 40 minutes. If you kept the gas chromatogram running for another half hour, no further compounds would show up. So biofuel prospectors stop there.
If you keep the instrument running on Isochrysis for another hour, however, another class of much heavier compounds starts to appear. These compounds are what makes oil from Isochrysis semi-solid at room temperature and deterred people from considering it as a fuel feedstock.
We weren’t deterred, however, because we’ve worked at Woods Hole Oceanographic Institution and knew what oceanographers know about Isochrysis. (See New Use for a Well-Known Algae.)
A common but unusual algae
Isochrysis is in a division of algae called haptophytes. There are a few different types of haptophytes, but they grow abundantly in the sunlit surface waters of the ocean. Unlike most other algal species, haptophytes make chemical compounds that have long intrigued oceanographers.
These compounds were first discovered in seafloor sediments from Walvis Ridge off West Africa in the 1970s. They are called alkenones, and they are composed of long chains with 37 to 39 carbons, linked in segments by carbon-to-carbon double bonds. Their structures make them formidable to decomposition, and so they sink to the seafloor and abide in sediments.
In the 1980s, scientists determined that alkenone-producing algae respond to different water temperatures by synthesizing more double bonds in their alkenones when temperatures are colder and fewer when they are warmer. By measuring ratios of double bonds in alkenones preserved in the sediments, oceanographers can reconstruct past sea-surface temperatures. (With some sophisticated techniques, they have also analyzed alkenones to determine how Earth’s aridity and atmospheric carbon dioxide levels varied in the past.)
As a result, these remarkable compounds are among the most extensively studied class of organic compounds in marine science. Even so, scientists still don’t know why haptophytes manufacture alkenones along with the more common fats. Alkenones are fats, however, and it is safe to assume they are used for energy storage.
Feedstocks and double bonds
Our oceanographic knowledge of alkenones made them attractive as a potential feedstock for the production of renewable chemicals and fuels. Our plan was to identify if we could make biodiesel from the triglycerides in Isochrysis and, in parallel, use the alkenones— the “other fat”—as another fuel, or coproduct. Coproducts are in fact cited as one of the key reasons for exploring algae as a source of biofuels in the U.S. Department of Energy’s 2010 “National Algal Biofuels Technology Roadmap.”
In particular, we focused on the possibility of producing jet fuel. Typical FAMEs are too long to be used as jet fuel, but serve as an excellent “drop-in” replacement for fossil diesel. Alkenones are even longer, but we targeted their double bonds as weak links that we could chemically cleave to cut the long chain into much smaller segments. Indeed, if we could, the alkenones offer lots of usable material to work with—the chemical equivalent of starting with 37-to-39-foot boards of wood, instead of the “14-to-20-foot boards” in triglycerides.
We used a chemical process called olefin metathesis, which earned its developers, Robert Grubbs and Richard Schrock, the Nobel Prize in Chemistry in 2005. In our newly published study, we showed that it selectively cleaves carbon-carbon double bonds of alkenones. The double bonds—and hence the cleaving—are ideally positioned in alkenones to produce fragments with shorter lengths similar to compounds used for fossil-based jet fuels.
So we have isolated alkenones as a product with biodiesel oils and can use these unusual compounds made by a common algae to produce jet fuel. But based on the current cost of Isochrysis sold by a handful of vendors for purpose of shellfish feed (about $400 per kilogram), the fuels we have produced would cost at least $10,000 per gallon.
With the incentive of this new-found potential for Isochrysis, can we find ways to grow it and harvest its compounds at industrial scales and cheaper costs? Can we simultaneously make additional co-products from Isochrysis—effectively to use every part of the buffalo as native-Americans did—to increase the overall value of algal biomass? Our research is merely a first step, but it’s an intriguing one.
This research was funded by the National Science Foundation, the Massachusetts Clean Energy Center, and Woods Hole Oceanographic Institution. READ MORE
Related articles
- FAMEs and Alkenones algae biofuel (Woods Hole Oceanographic Institution)
- Isochrysis algae to biofuel and jet fuel (Woods Hole Oceanographic Institution)
- Production of Jet Fuel Range Hydrocarbons as a Coproduct of Algal Biodiesel by Butenolysis of Long-Chain Alkenones (Energy & Fuels)
More than 50,000 articles in our online library!
Use the categories and tags listed below to access the nearly 50,000 articles indexed on this website.
Advanced Biofuels USA Policy Statements and Handouts!
- For Kids: Carbon Cycle Puzzle Page
- Why Ethanol? Why E85?
- Just A Minute 3-5 Minute Educational Videos
- 30/30 Online Presentations
- “Disappearing” Carbon Tax for Non-Renewable Fuels
- What’s the Difference between Biodiesel and Renewable (Green) Diesel? 2020 revision
- How to De-Fossilize Your Fleet: Suggestions for Fleet Managers Working on Sustainability Programs
- New Engine Technologies Could Produce Similar Mileage for All Ethanol Fuel Mixtures
- Action Plan for a Sustainable Advanced Biofuel Economy
- The Interaction of the Clean Air Act, California’s CAA Waiver, Corporate Average Fuel Economy Standards, Renewable Fuel Standards and California’s Low Carbon Fuel Standard
- Latest Data on Fuel Mileage and GHG Benefits of E30
- What Can I Do?
Donate
DonateARCHIVES
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- June 2007
- February 2007
- January 2007
- October 2006
- April 2006
- January 2006
- April 2005
- December 2004
- November 2004
- December 1987
CATEGORIES
- About Us
- Advanced Biofuels Call to Action
- Aviation Fuel/Sustainable Aviation Fuel (SAF)
- BioChemicals/Renewable Chemicals
- BioRefineries/Renewable Fuel Production
- Business News/Analysis
- Cooking Fuel
- Education
- 30/30 Online Presentations
- Competitions, Contests
- Earth Day 2021
- Earth Day 2022
- Earth Day 2023
- Earth Day 2024
- Executive Training
- Featured Study Programs
- Instagram TikTok Short Videos
- Internships
- Just a Minute
- K-12 Activities
- Mechanics training
- Online Courses
- Podcasts
- Scholarships/Fellowships
- Teacher Resources
- Technical Training
- Technician Training
- University/College Programs
- Events
- Coming Events
- Completed Events
- More Coming Events
- Requests for Speakers, Presentations, Posters
- Requests for Speakers, Presentations, Posters Completed
- Webinars/Online
- Webinars/Online Completed; often available on-demand
- Federal Agency/Executive Branch
- Agency for International Development (USAID)
- Agriculture (USDA)
- Commerce Department
- Commodity Futures Trading Commission
- Congressional Budget Office
- Defense (DOD)
- Air Force
- Army
- DARPA (Defense Advance Research Projects Agency)
- Defense Logistics Agency
- Marines
- Navy
- Education Department
- Energy (DOE)
- Environmental Protection Agency
- Federal Energy Regulatory Commission (FERC)
- Federal Reserve System
- Federal Trade Commission
- Food and Drug Administration
- General Services Administration
- Government Accountability Office (GAO)
- Health and Human Services (HHS)
- Homeland Security
- Housing and Urban Development (HUD)
- Interior Department
- International Trade Commission
- Joint Office of Energy and Transportation
- Justice (DOJ)
- Labor Department
- National Academies of Sciences Engineering Medicine
- National Aeronautics and Space Administration
- National Oceanic and Atmospheric Administration
- National Research Council
- National Science Foundation
- National Transportation Safety Board (NTSB)
- Occupational Safety and Health Administration
- Overseas Private Investment Corporation
- Patent and Trademark Office
- Securities and Exchange Commission
- State Department
- Surface Transportation Board
- Transportation (DOT)
- Federal Aviation Administration
- National Highway Traffic Safety Administration (NHTSA)
- Pipeline and Hazardous Materials Safety Admin (PHMSA)
- Treasury Department
- U.S. Trade Representative (USTR)
- White House
- Federal Legislation
- Federal Litigation
- Federal Regulation
- Feedstocks
- Agriculture/Food Processing Residues nonfield crop
- Alcohol/Ethanol/Isobutanol
- Algae/Other Aquatic Organisms/Seaweed
- Atmosphere
- Carbon Dioxide (CO2)
- Field/Orchard/Plantation Crops/Residues
- Forestry/Wood/Residues/Waste
- hydrogen
- Manure
- Methane/Biogas
- methanol/bio-/renewable methanol
- Not Agriculture
- RFNBO (Renewable Fuels of Non-Biological Origin)
- Seawater
- Sugars
- water
- Funding/Financing/Investing
- grants
- Green Jobs
- Green Racing
- Health Concerns/Benefits
- Heating Oil/Fuel
- History of Advanced Biofuels
- Infrastructure
- Aggregation
- Biofuels Engine Design
- Biorefinery/Fuel Production Infrastructure
- Carbon Capture/Storage/Use
- certification
- Deliver Dispense
- Farming/Growing
- Precursors/Biointermediates
- Preprocessing
- Pretreatment
- Terminals Transport Pipelines
- International
- Abu Dhabi
- Afghanistan
- Africa
- Albania
- Algeria
- Angola
- Antarctica
- Argentina
- Armenia
- Aruba
- Asia
- Asia Pacific
- Australia
- Austria
- Azerbaijan
- Bahamas
- Bahrain
- Bangladesh
- Barbados
- Belarus
- Belgium
- Belize
- Benin
- Bermuda
- Bhutan
- Bolivia
- Bosnia and Herzegovina
- Botswana
- Brazil
- Brunei
- Bulgaria
- Burkina Faso
- Burundi
- Cambodia
- Cameroon
- Canada
- Caribbean
- Central African Republic
- Central America
- Chad
- Chile
- China
- Colombia
- Congo, Democratic Republic of
- Costa Rica
- Croatia
- Cuba
- Cyprus
- Czech Republic
- Denmark
- Dominican Republic
- Dubai
- Ecuador
- El Salvador
- Equatorial Guinea
- Eqypt
- Estonia
- Ethiopia
- European Union (EU)
- Fiji
- Finland
- France
- French Guiana
- Gabon
- Georgia
- Germany
- Ghana
- Global South
- Greece
- Greenland
- Guatemala
- Guinea
- Guyana
- Haiti
- Honduras
- Hong Kong
- Hungary
- Iceland
- India
- Indonesia
- Iran
- Iraq
- Ireland
- Israel
- Italy
- Ivory Coast
- Jamaica
- Japan
- Jersey
- Jordan
- Kazakhstan
- Kenya
- Korea
- Kosovo
- Kuwait
- Laos
- Latin America
- Latvia
- Lebanon
- Liberia
- Lithuania
- Luxembourg
- Macedonia
- Madagascar
- Malawi
- Malaysia
- Maldives
- Mali
- Malta
- Marshall Islands
- Mauritania
- Mauritius
- Mexico
- Middle East
- Monaco
- Mongolia
- Morocco
- Mozambique
- Myanmar/Burma
- Namibia
- Nepal
- Netherlands
- New Guinea
- New Zealand
- Nicaragua
- Niger
- Nigeria
- North Africa
- North Korea
- Northern Ireland
- Norway
- Oman
- Pakistan
- Panama
- Papua New Guinea
- Paraguay
- Peru
- Philippines
- Poland
- Portugal
- Qatar
- Romania
- Russia
- Rwanda
- Saudi Arabia
- Scotland
- Senegal
- Serbia
- Sierra Leone
- Singapore
- Slovakia
- Slovenia
- Solomon Islands
- South Africa
- South America
- South Korea
- South Sudan
- Southeast Asia
- Spain
- Sri Lanka
- Sudan
- Suriname
- Swaziland
- Sweden
- Switzerland
- Taiwan
- Tanzania
- Thailand
- Timor-Leste
- Togo
- Trinidad and Tobago
- Tunisia
- Turkey
- Uganda
- UK (United Kingdom)
- Ukraine
- United Arab Emirates UAE
- Uruguay
- Uzbekistan
- Vatican
- Venezuela
- Vietnam
- Wales
- Zambia
- Zanzibar
- Zimbabwe
- Marine/Boat Bio and Renewable Fuel/MGO/MDO/SMF
- Marketing/Market Forces and Sales
- Opinions
- Organizations
- Original Writing, Opinions Advanced Biofuels USA
- Policy
- Presentations
- Biofuels Digest Conferences
- DOE Conferences
- Bioeconomy 2017
- Bioenergy2015
- Biomass2008
- Biomass2009
- Biomass2010
- Biomass2011
- Biomass2012
- Biomass2013
- Biomass2014
- DOE Project Peer Review
- Other Conferences/Events
- R & D Focus
- Carbon Capture/Storage/Use
- Co-Products
- Feedstock
- Logistics
- Performance
- Process
- Vehicle/Engine/Motor/Aircraft/Boiler
- Yeast
- Railroad/Train/Locomotive Fuel
- Resources
- Books Web Sites etc
- Business
- Definition of Advanced Biofuels
- Find Stuff
- Government Resources
- Scientific Resources
- Technical Resources
- Tools/Decision-Making
- Rocket/Missile Fuel
- Sponsors
- States
- Alabama
- Alaska
- Arizona
- Arkansas
- California
- Colorado
- Connecticut
- Delaware
- Florida
- Georgia
- Hawai'i
- Idaho
- Illinois
- Indiana
- Iowa
- Kansas
- Kentucky
- Louisiana
- Maine
- Maryland
- Massachusetts
- Michigan
- Midwest
- Minnesota
- Mississippi
- Missouri
- Montana
- Native American tribal nation lands
- Nebraska
- Nevada
- New Hampshire
- New Jersey
- New Mexico
- New York
- North Carolina
- North Dakota
- Ohio
- Oklahoma
- Oregon
- Pennsylvania
- Puerto Rico
- Rhode Island
- South Carolina
- South Dakota
- Tennessee
- Texas
- Utah
- Vermont
- Virginia
- Washington
- Washington DC
- West Coast
- West Virginia
- Wisconsin
- Wyoming
- Sustainability
- Uncategorized
- What You Can Do
tags
© 2008-2023 Copyright Advanced BioFuels USA. All Rights reserved.
Comments are closed.