Interview — Growing Food or Fuel on Our Land?
(European Environment Agency) Only a decade ago, biofuel production from plants was hailed as an ecological alternative to fossil fuels. Recently, it has come to be seen as competing with food production and not always an effective solution in reducing emissions of greenhouse gases or air pollutants. We talked to Irini Maltsoglou, Natural Resources Officer at the Food and Agriculture Organization of the United Nations (FAO), about biofuel production and agriculture and if and how it can be done sustainably.
Why has biofuel production been so controversial in recent years?
The downsides of biofuel relate to unsustainable agricultural production more generally. As in any agricultural activity, biofuel production can have negative impacts when it does not take into account the local community or the local labour force, and does not consider the environmental and social context. It is not a very straightforward formula in the sense that, as in any form of agricultural production, we need to see what is currently produced and how biofuels could be integrated into this local production. We also need to assess biofuel production’s potential for poverty reduction and economic development in the area.
In this light, we cannot say that biofuel production is bad in itself. It depends very much on the type of agricultural practices adopted and whether or not these are sustainable. For example, agricultural production in a natural forest area — for biofuels or other crops — would have very negative impacts because it uses land that should not be touched. On the other hand, a specific and sustainable set-up for biofuels using suitable land that tries to engage the local farmers could benefit the local community and offer new economic opportunities.
Is biofuel production competing with food production for land and water resources?
This dichotomy — biofuels or food — oversimplifies a very complex issue. First of all, biofuels are very context and country specific. We need to look at the country context to see if the specific biofuel production being considered is viable in that specific agricultural landscape.
…
Are second-generation biofuels more efficient in terms of land and water use?
…
We did some back-of-the-envelope calculations comparing a first-generation sugar beet option with a second-generation miscanthus option. The numbers showed that by planting sugar beet (i.e. a first-generation biofuel), we can actually get more ethanol from the same plot of land than if we were to plant miscanthus (a source of second-generation biofuels). We would also need more water for miscanthus. Similarly, we might need more electricity as an energy input to produce second-generation biofuels, albeit that this would very much depend on the technology selected and the possible feedback loops in the second-generation system.
These issues are dependent on basic agriculture. Are you in a country well suited to sugar beet production? Do farmers have long-standing experience with sugar beet? In this case, sugar beet would be a better option, particularly when we consider the level of maturity of the available technology. Are you in a country where second-generation biofuel production is more viable? If so, this might be an option. Nevertheless, at this stage, setting up a second-generation plant from scratch requires large investments. The investment needed for a second-generation biofuel plant is four to five times the amount needed for a first-generation plant.
…
In recent years, we have taken a closer look at agricultural residue and bioenergy production. We are trying to look at agricultural residues that are sustainable and food secure. Although it is explicitly forbidden in most cases, these residues are very often burned and this constitutes yet another source of greenhouse gas emissions. Given this, building bioenergy supply chains around agricultural residues would not only reduce greenhouse gas emissions but could also meet part of the existing energy needs at the same time. Next year, we will be exploring how that biomass could be mobilised. Agricultural residues are often scattered, so collecting them is a challenge. In addition to collection centres, we could also analyse potential payoffs for farmers and how much the industry could pay for the residue. Agricultural residues could then become a commodity that is too valuable to burn. READ MORE