(CNH/Case IH/New Holland/PR Newswire) Better use of labor, integration into current machinery fleets, plus the flexibility to work unmanned around the clock with real time data monitoring – and, in the future, the ability to automatically respond to weather events. That's what the concept autonomous tractor technology developed by CNH Industrial could bring to future world agriculture, following its public preview at the 2016 Farm Progress Show in Boone, Iowa, USA.
Precision farming and machine automation are already taking on ever-greater importance in order to meet the need for more efficient, economic and sustainable agriculture. However, at key times of the year farm work still demands long hours in the field – particularly when harvesting a crop, or planting the next one.
...
Via its Case IH and New Holland Agriculture brands, CNH Industrial's Innovation Group has proactively developed concept autonomous technology to meet this challenge and help farmers and agribusinesses sustainably boost production and productivity at these times, through the ability to make the most of ideal soil and weather conditions, as well as available labor.
Auto-steering and telematics are already available on today's tractors and autonomous technology takes this a significant stage further. Based on the existing Case IH Magnum and New Holland T8 high-horsepower conventional tractors, and using GPS in conjunction with the most accurate satellite correction signals for ultra-precise guidance and immediate recording and transmission of field data, the CNH Industrial autonomous tractor concept has been designed to allow completely remote deployment, monitoring and control of the machines.
Flexible autonomous solutions
The concept tractors are configured as two distinct versions. These offer the potential to use CNH Industrial's autonomous technology to completely remove the operator from the cab – in the case of the cabless concept Case IH Magnum. The New Holland T8 NHDrive™ concept tractor maintains its cab to deliver operating flexibility, with traditional human operation for road transport and when performing tasks currently unsuited to automation. Autonomous mode is then engaged when compatible tasks are performed. In either format, the machines can be seamlessly integrated into existing fleets, and aside from the driverless technology they use a conventional engine, transmission, chassis and implement couplings.
Distinctive design
CNH Industrial's in-house Styling Center used the current Case IH Magnum as the starting point for the brand's concept autonomous tractor. The international Industrial Design Team then reimagined the tractor for a future autonomous era, eliminating the traditional operator station and crafting the concept Magnum's sleek and dynamic lines. The aggressive headlights, sculpted bonnet and distinctive silhouette are complemented by carbon fiber front fenders, two-tone black and red wheel rims and signature LED status running lights.
In control
A fully interactive interface has been developed to control the autonomous tractors, while at the same time providing immediate and secure feedback, recording and transfer of operational data. The process of operating either tractor begins with inputting field boundary maps into the system, and then using the integrated path planning software to plot the most efficient field paths for machines – autonomous technology is most suited to jobs that make this possible, and which require minimal complex operator intervention, such as cultivation, planting, spraying and mowing. This system automatically accounts for implement widths, and also plots the most efficient paths when working with multiple machines, including those operating with different implement widths and with varying operating requirements. Manual path plotting can also be carried out for refueling or when custom paths are required.
Once path plotting has finished, the user can choose a job from a pre-programmed menu simply by selecting the vehicle, choosing the field and then setting the tractor out on its task, the whole sequence taking little more than 30 seconds.
Subsequently, the machine and implement can be monitored and controlled either via a desktop computer or via a portable tablet interface, which can both display three operating screens. This enables users to access this data, wherever they are, from locations as disparate as from the comfort of their pick-up truck whilst checking fields, or whilst tending livestock or even at home, and always whenever they need. This facilitates right-time decision making to enhance operational efficiency and productivity. Furthermore, farmers will maintain full control and ownership of their data.
A path-plotting screen shows the tractor's progress, another shows its live camera feeds, providing the user with up to four real time views (two front and two rear), while a further screen enables monitoring and modification of key machine and implement parameters such as engine speed, fuel levels and implement settings – seeding rate or planter downforce, for example. The route to the field can also be planned, should this involve negotiable private roads or tracks.
In the field
Among the many things these two designs have in common is a complete sensing and perception package, which includes radar, LiDAR (range finding lasers) and video cameras to ensure obstacles or obstructions in the tractor's path or that of the implement are detected and avoided. This not only ensures the safety of anybody or anything which comes within proximity of the machine, but it also guarantees trouble-free, efficient operation for hour after hour in the field. Should an object be detected in the tractor's path, visual and audio warnings appear on the control interface – either tablet interface or desktop – which offers a choice of how the tractor should respond: by waiting for human intervention, driving around the obstacle using either a manually or automatically plotted path or, in the event that it is something such as a straw pile or tree branch, driving onwards. Should something – for example, another machine – cross its path and continue moving, it will come to a momentary standstill and move off again once its way is clear.
In the instance operating parameters become critical, as in the case of low fuel or seed levels, the same notifying system is employed. Any critical machine alarms or loss of critical machine control functions cause the autonomous vehicle to stop automatically for safety reasons, while a stop button on the control interface can be activated manually for the same purpose.
The tractor can be left to carry out its task, monitored remotely through the tablet interface. Its screen also allowing machine and implement settings to be altered remotely. Machine tasks can be modified in real time, such as if a storm is approaching. In the future these concept tractors will be able to use 'big data' such as real time weather satellite information to automatically make best use of ideal conditions, independent of human input, regardless of the time of day. For example the tractor would stop automatically should it become apparent changeable weather would cause a problem, then recommence work when conditions would have sufficiently improved. Alternatively, if on private roads, they can be sent to another field destination where conditions are better – soils are lighter or there has been no rain, for example.
The tablet interface can also be mounted in another machine whose operator can supervise its activities. As an example, from the seat of a combine or tractor, the operator can monitor the progress and eventually modify the performance of an autonomous tractor/planter combination working in the same or neighboring field. As such, autonomous tractors can seamlessly integrate into an existing farm machinery fleet, with minimal operational changes. Alternatively, multiple autonomous tractors can be put to work in one field or separate fields, on the same tasks or consecutive ones – such as cultivation and seeding – all of which can be controlled through the same interface.
A vision for the future of farming
While the concept Case IH Magnum and New Holland T8 NHDrive autonomous models are using conceptual CNH Industrial technology, they address relevant real world situations. Autonomous tractor operation is suited both to owner-operator situations, where it could allow a person working with no employees to operate two tractors, or to the very largest businesses where finding suitable skilled labor is becoming increasingly more challenging.
These autonomous technologies have been designed so that, in the future, they could be further developed to enable their application across the full range of equipment in a modern farmer's fleet. This could encompass the full range of tractors, harvesting equipment and support vehicles, such as sprayers.
CNH Industrial has worked with its long-standing technology provider Autonomous Solutions Incorporated, ASI, a Utah-based company that is the industry leader in off-road autonomous solutions, in order to develop and refine this concept autonomous technology. An intensive testing program was undertaken to ensure both the concept tractors themselves and the critical tractor/planter interface are fully functional and intuitive to operate.
Since the mid-1990s, CNH Industrial and its constituent agricultural equipment brands have led the industry in utilizing precision technology to make farming as efficient, productive and sustainable as possible. Case IH's Advanced Farming Systems (AFS) and New Holland's Precision Land Management (PLM) packages were among the first to make use of GPS-aided systems to allow farmers to record their field activity, make non-overlapping passes, and variably-apply fertilizer and crop protection products, so that nothing is missed or wasted. CNH Industrial's concept autonomous tractor technology is the next step along this path – and holds significant promise for the sustainable and productive future of farming. READ MORE
More than 50,000 articles in our online library!
Use the categories and tags listed below to access the nearly 50,000 articles indexed on this website.
Advanced Biofuels USA Policy Statements and Handouts!
- For Kids: Carbon Cycle Puzzle Page
- Why Ethanol? Why E85?
- Just A Minute 3-5 Minute Educational Videos
- 30/30 Online Presentations
- “Disappearing” Carbon Tax for Non-Renewable Fuels
- What’s the Difference between Biodiesel and Renewable (Green) Diesel? 2020 revision
- How to De-Fossilize Your Fleet: Suggestions for Fleet Managers Working on Sustainability Programs
- New Engine Technologies Could Produce Similar Mileage for All Ethanol Fuel Mixtures
- Action Plan for a Sustainable Advanced Biofuel Economy
- The Interaction of the Clean Air Act, California’s CAA Waiver, Corporate Average Fuel Economy Standards, Renewable Fuel Standards and California’s Low Carbon Fuel Standard
- Latest Data on Fuel Mileage and GHG Benefits of E30
- What Can I Do?
Donate
DonateARCHIVES
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- June 2007
- February 2007
- January 2007
- October 2006
- April 2006
- January 2006
- April 2005
- December 2004
- November 2004
- December 1987
CATEGORIES
- About Us
- Advanced Biofuels Call to Action
- Aviation Fuel/Sustainable Aviation Fuel (SAF)
- BioChemicals/Renewable Chemicals
- BioRefineries/Renewable Fuel Production
- Business News/Analysis
- Cooking Fuel
- Education
- 30/30 Online Presentations
- Competitions, Contests
- Earth Day 2021
- Earth Day 2022
- Earth Day 2023
- Earth Day 2024
- Executive Training
- Featured Study Programs
- Instagram TikTok Short Videos
- Internships
- Just a Minute
- K-12 Activities
- Mechanics training
- Online Courses
- Podcasts
- Scholarships/Fellowships
- Teacher Resources
- Technical Training
- Technician Training
- University/College Programs
- Events
- Coming Events
- Completed Events
- More Coming Events
- Requests for Speakers, Presentations, Posters
- Requests for Speakers, Presentations, Posters Completed
- Webinars/Online
- Webinars/Online Completed; often available on-demand
- Federal Agency/Executive Branch
- Agency for International Development (USAID)
- Agriculture (USDA)
- Commerce Department
- Commodity Futures Trading Commission
- Congressional Budget Office
- Defense (DOD)
- Air Force
- Army
- DARPA (Defense Advance Research Projects Agency)
- Defense Logistics Agency
- Marines
- Navy
- Education Department
- Energy (DOE)
- Environmental Protection Agency
- Federal Energy Regulatory Commission (FERC)
- Federal Reserve System
- Federal Trade Commission
- Food and Drug Administration
- General Services Administration
- Government Accountability Office (GAO)
- Health and Human Services (HHS)
- Homeland Security
- Housing and Urban Development (HUD)
- Interior Department
- International Trade Commission
- Joint Office of Energy and Transportation
- Justice (DOJ)
- Labor Department
- National Academies of Sciences Engineering Medicine
- National Aeronautics and Space Administration
- National Oceanic and Atmospheric Administration
- National Research Council
- National Science Foundation
- National Transportation Safety Board (NTSB)
- Occupational Safety and Health Administration
- Overseas Private Investment Corporation
- Patent and Trademark Office
- Securities and Exchange Commission
- State Department
- Surface Transportation Board
- Transportation (DOT)
- Federal Aviation Administration
- National Highway Traffic Safety Administration (NHTSA)
- Pipeline and Hazardous Materials Safety Admin (PHMSA)
- Treasury Department
- U.S. Trade Representative (USTR)
- White House
- Federal Legislation
- Federal Litigation
- Federal Regulation
- Feedstocks
- Agriculture/Food Processing Residues nonfield crop
- Alcohol/Ethanol/Isobutanol
- Algae/Other Aquatic Organisms/Seaweed
- Atmosphere
- Carbon Dioxide (CO2)
- Field/Orchard/Plantation Crops/Residues
- Forestry/Wood/Residues/Waste
- hydrogen
- Manure
- Methane/Biogas
- methanol/bio-/renewable methanol
- Not Agriculture
- RFNBO (Renewable Fuels of Non-Biological Origin)
- Seawater
- Sugars
- water
- Funding/Financing/Investing
- grants
- Green Jobs
- Green Racing
- Health Concerns/Benefits
- Heating Oil/Fuel
- History of Advanced Biofuels
- Infrastructure
- Aggregation
- Biofuels Engine Design
- Biorefinery/Fuel Production Infrastructure
- Carbon Capture/Storage/Use
- certification
- Deliver Dispense
- Farming/Growing
- Precursors/Biointermediates
- Preprocessing
- Pretreatment
- Terminals Transport Pipelines
- International
- Abu Dhabi
- Afghanistan
- Africa
- Albania
- Algeria
- Angola
- Antarctica
- Argentina
- Armenia
- Aruba
- Asia
- Asia Pacific
- Australia
- Austria
- Azerbaijan
- Bahamas
- Bahrain
- Bangladesh
- Barbados
- Belarus
- Belgium
- Belize
- Benin
- Bermuda
- Bhutan
- Bolivia
- Bosnia and Herzegovina
- Botswana
- Brazil
- Brunei
- Bulgaria
- Burkina Faso
- Burundi
- Cambodia
- Cameroon
- Canada
- Caribbean
- Central African Republic
- Central America
- Chad
- Chile
- China
- Colombia
- Congo, Democratic Republic of
- Costa Rica
- Croatia
- Cuba
- Cyprus
- Czech Republic
- Denmark
- Dominican Republic
- Dubai
- Ecuador
- El Salvador
- Equatorial Guinea
- Eqypt
- Estonia
- Ethiopia
- European Union (EU)
- Fiji
- Finland
- France
- French Guiana
- Gabon
- Georgia
- Germany
- Ghana
- Global South
- Greece
- Greenland
- Guatemala
- Guinea
- Guyana
- Haiti
- Honduras
- Hong Kong
- Hungary
- Iceland
- India
- Indonesia
- Iran
- Iraq
- Ireland
- Israel
- Italy
- Ivory Coast
- Jamaica
- Japan
- Jersey
- Jordan
- Kazakhstan
- Kenya
- Korea
- Kosovo
- Kuwait
- Laos
- Latin America
- Latvia
- Lebanon
- Liberia
- Lithuania
- Luxembourg
- Macedonia
- Madagascar
- Malawi
- Malaysia
- Maldives
- Mali
- Malta
- Marshall Islands
- Mauritania
- Mauritius
- Mexico
- Middle East
- Monaco
- Mongolia
- Morocco
- Mozambique
- Myanmar/Burma
- Namibia
- Nepal
- Netherlands
- New Guinea
- New Zealand
- Nicaragua
- Niger
- Nigeria
- North Africa
- North Korea
- Northern Ireland
- Norway
- Oman
- Pakistan
- Panama
- Papua New Guinea
- Paraguay
- Peru
- Philippines
- Poland
- Portugal
- Qatar
- Romania
- Russia
- Rwanda
- Saudi Arabia
- Scotland
- Senegal
- Serbia
- Sierra Leone
- Singapore
- Slovakia
- Slovenia
- Solomon Islands
- South Africa
- South America
- South Korea
- South Sudan
- Southeast Asia
- Spain
- Sri Lanka
- Sudan
- Suriname
- Swaziland
- Sweden
- Switzerland
- Taiwan
- Tanzania
- Thailand
- Timor-Leste
- Togo
- Trinidad and Tobago
- Tunisia
- Turkey
- Uganda
- UK (United Kingdom)
- Ukraine
- United Arab Emirates UAE
- Uruguay
- Uzbekistan
- Vatican
- Venezuela
- Vietnam
- Wales
- Zambia
- Zanzibar
- Zimbabwe
- Marine/Boat Bio and Renewable Fuel/MGO/MDO/SMF
- Marketing/Market Forces and Sales
- Opinions
- Organizations
- Original Writing, Opinions Advanced Biofuels USA
- Policy
- Presentations
- Biofuels Digest Conferences
- DOE Conferences
- Bioeconomy 2017
- Bioenergy2015
- Biomass2008
- Biomass2009
- Biomass2010
- Biomass2011
- Biomass2012
- Biomass2013
- Biomass2014
- DOE Project Peer Review
- Other Conferences/Events
- R & D Focus
- Carbon Capture/Storage/Use
- Co-Products
- Feedstock
- Logistics
- Performance
- Process
- Vehicle/Engine/Motor/Aircraft/Boiler
- Yeast
- Railroad/Train/Locomotive Fuel
- Resources
- Books Web Sites etc
- Business
- Definition of Advanced Biofuels
- Find Stuff
- Government Resources
- Scientific Resources
- Technical Resources
- Tools/Decision-Making
- Rocket/Missile Fuel
- Sponsors
- States
- Alabama
- Alaska
- Arizona
- Arkansas
- California
- Colorado
- Connecticut
- Delaware
- Florida
- Georgia
- Hawai'i
- Idaho
- Illinois
- Indiana
- Iowa
- Kansas
- Kentucky
- Louisiana
- Maine
- Maryland
- Massachusetts
- Michigan
- Midwest
- Minnesota
- Mississippi
- Missouri
- Montana
- Native American tribal nation lands
- Nebraska
- Nevada
- New Hampshire
- New Jersey
- New Mexico
- New York
- North Carolina
- North Dakota
- Ohio
- Oklahoma
- Oregon
- Pennsylvania
- Puerto Rico
- Rhode Island
- South Carolina
- South Dakota
- Tennessee
- Texas
- Utah
- Vermont
- Virginia
- Washington
- Washington DC
- West Coast
- West Virginia
- Wisconsin
- Wyoming
- Sustainability
- Uncategorized
- What You Can Do
tags
© 2008-2023 Copyright Advanced BioFuels USA. All Rights reserved.
Comments are closed.