Capturing Carbon with Crops, Trees and Bioenergy
by Emilie Lorditch (Michigan State University/Phys.Org) An integrated approach to land management practices in the U.S. can reduce carbon dioxide in the atmosphere far more than earlier estimates based on separate approaches, Michigan State University researchers say. Their research was published May 31 in the journal Global Change Biology.
“Using only land management or bioenergy in an either-or scenario turns out to be short-sighted,” said Phil Robertson, a University Distinguished Professor of Plant, Soil and Microbial Sciences at MSU’s Kellogg Biological Station. “When we combine them, we find potential carbon dioxide storage capacity levels that neither approach alone can attain.”
…
Bioenergy uses plant-based fuels to run cars on ethanol or electricity, and during its production the carbon dioxide it releases can be geologically stored or sequestered below ground.
Robertson and colleagues from Colorado State University and the University of Aberdeen in the U.K. assigned management practices known to reduce or capture greenhouse gases in cropland, grazing lands and forests to different portions of the U.S. landscape. Practices included reforestation, forest and grassland management, cropland practices like cover crops and no-till, and bioenergy production on lands not used to grow food. Many of these practices have additional benefits including improving soil health, biodiversity and water quality. READ MORE
G. Philip Robertson et al, Land‐based climate solutions for the United States, Global Change Biology (2022). DOI: 10.1111/gcb.16267