by Karina Ninni (Agência FAPESP)– Converting agroindustrial waste into molecules of interest to society, such as biofuels and biochemicals, is one of the ways to mitigate dependence on oil and other fossil fuels. As one of the world’s largest producers of plant biomass, Brazil is well-placed to lead this transition, but lignocellulosic raw materials (containing lignin, hemicellulose and cellulose) are hard to deconstruct, or (more technically put) recalcitrant to microbial and enzymatic degradation.
Scientists in Brazil are looking to nature to find out how strategies to increase the availability of the sugars these materials contain can improve their depolymerization. In Campinas (São Paulo state), a research group at the Brazilian Biorenewables National Laboratory (LNBR), an arm of the Brazilian Center for Research in Energy and Materials (CNPEM), conducted an interdisciplinary study involving omics (genomics, proteomics, metabolomics, etc.) and synchrotron light, and discovered two novel families of enzymes with biotechnological potential produced by microorganisms in the gut of capybaras. CNPEM is a private nonprofit supervised by the Ministry of Science, Technology and Innovation (MCTI).
Both enzyme families act on components of plant cell walls and can therefore be used to produce biofuels, biochemicals and biomaterials. One of them also has potential applications in the dairy industry because it promotes lactose degradation.
“One of our research lines explores Brazilian diversity in pursuit of novel microbial mechanisms that reduce the recalcitrance of lignocellulosic waste. We noted that the capybara is a highly adapted herbivore capable of obtaining energy from recalcitrant plant waste and that it hasn’t been studied very much,” said Mário Tyago Murakami, LNBR’s Scientific Director and last author of the article reporting the study (https://www.nature.com/articles/s41467-022-28310-y)in Nature Communications.
The capybara (Hydrochoerus hydrochaeris) is the world’s largest living rodent and very efficiently converts the sugars contained in plants into energy, although it is disliked in some quarters because it can harbor the tick that transmits Brazilian spotted fever, a rare but highly lethal infectious disease caused by the bacterium Rickettsia rickettsii.
“There are plenty of studies of ruminants, especially bovines, but information about monogastric herbivores is relatively scarce. Unlike ruminants, capybaras digest grass and other plant matter in the cecum, the first part of the large intestine. In light of their highly efficient sugar conversion, and because capybaras in the Piracicaba region [of São Paulo state] feed on sugarcane, among other plants, we started from the hypothesis that microorganisms present in the animal’s digestive tract might have unique molecular strategies to depolymerize this biomass, which is very important to Brazilian industry,” said Gabriela Felix Persinoti, a bioinformatics researcher at LNBR and corresponding author of the article.
The study was supported by FAPESP via a Thematic Project and a postdoctoral scholarship awarded to Mariana Abrahão Bueno de Morais.
Novel methodology
The interdisciplinary approach used in the study included multi-omics (genomics, transcriptomics and metabolomics used to characterize molecular aspects of the capybara’s gut microbiota) and bioinformatics, as well as CNPEM’s particle accelerators to analyze the discovered enzymes at the atomic level. “I can’t recall any studies that have combined all these techniques, including the use of synchrotron light [a source of extremely bright electromagnetic radiation that helps scientists observe the inner structures of materials],” Murakami said. “In this research, our analysis drilled all the way down from the microbial community to the atomic structure of certain proteins.”
The scientists analyzed samples collected from the cecum and rectum of three female capybaras euthanized in Tatuí (São Paulo state) in 2017 under the local policy for controlling the capybara population. The animals were neither pregnant nor infected by R. rickettsii.
“The cecal and rectal samples were collected by abdominal surgery. The material was frozen in liquid nitrogen. DNA and RNA samples were extracted in the laboratory and submitted to large-scale sequencing using integrative omics,” Persinoti said.
They began by sequencing marker genes, in this case 16S, present in all bacteria and archaea. “With this first sequencing, we were able to detect differences between the cecal and rectal samples and to identify the main microorganisms in them. The gene 16S gave us a superficial answer as to which microorganisms were present and abundant to a greater or lesser extent, but didn’t tell us which enzymes the microorganisms produced or which enzymes were present in their genomes,” she explained. “For this purpose, we used another omics technique, metagenomics. We submitted DNA from the entire microbial community in the capybaras’ gastrointestinal tract to large-scale sequencing, obtaining a larger amount of data. By deploying an array of bioinformatics tools, we were able not only to identify the genomes present in each of the samples, and the genes in each of the genomes, but also to find out which genes were new and which microorganisms had never been described. In this manner, we were able to predict the functions of the genes that had the potential to help depolymerize biomass and convert sugar into energy.”
The researchers also wanted to know which microorganisms were most active at the time the samples were collected – in other words, which genes the microorganisms were actually expressing. To this end, they used metatranscriptomics, for which the raw material is RNA. “Another technique we used was metabolomics, to confirm which metabolites the microorganisms were producing,” Persinoti said. “Combining all this information from omics, bioinformatics, and actual and potential gene expression, we were able to decipher the role of gut microorganisms in achieving such highly efficient conversion of plant fibers and to find out which genes were involved in the process.”
They then analyzed all this data to identify genes that could play a key role in reducing plant fiber recalcitrance, focusing mainly on hitherto unknown targets. “The selection strategy focused on novel genomes with an abundance of genes involved in plant biomass depolymerization,” Persinoti said. “We saw how these genes were organized in the genomes of the microorganisms, and leveraged this information to find out whether there were nearby genes with unknown functions that might be involved in breaking down recalcitrant plant fiber. This is important because it guides the search for novel genes, but only when we were able to demonstrate these results experimentally at a later stage could we establish the creation of these novel families of enzymes.”
Having identified these candidates, they moved on to a biochemical demonstration of their functions. “We synthesized the genes in vitro and expressed them using a bacterium to produce the corresponding proteins,” Persinoti said. “We performed several enzyme and biochemical assays to discover the functions of these proteins and where they acted. We determined the proteins’ atomic structures using synchrotron light and other techniques. With this functional and structural information, we were able to do other experiments to find out which regions of the proteins were critical to their activity and analyze the molecular mechanisms underlying their functions.”
According to Murakami, dual validation ensured that novel families were indeed involved. “We selected a gene not very similar to one we had studied previously in the set of sequences that theoretically formed the universe of a newly discovered family. We synthesized the gene, purified it, characterized it biochemically, and showed that the sequence had the same functional properties as the previous one,” he explained. “In other words, we characterized a second member of the new family in order to be absolutely sure these proteins did indeed constitute a novel family.”
Novel enzymes and cocktails
Persinoti revealed that one of the newly discovered families called GH173 has potential applications in the food industry, while another called CBM89 is associated with carbohydrate recognition and could facilitate the production of second-generation ethanol from sugarcane bagasse and straw.
The researchers are also developing enzyme cocktails with enzyme-hyperproducing fungi, and the newly discovered enzymes could naturally be included in these fungal platforms. “The discovery of novel enzyme families can be integrated with the transfer of technology to support innovation,” Murakami said. “In our group, we’re very interested in exploring this great Brazilian biodiversity treasure, particularly to understand what we call dark genomic matter – parts of these complex microbial communities with unknown potential. Our center has excellent infrastructure for this purpose and, together with our partnerships with public universities, this has enabled competitive research of this kind to be done in Brazil. Indeed, 99% of the work, from conceptual design to execution, analysis and writing up, was done here. Given the immense richness of Brazilian biodiversity, it was only to be expected that we would have the conditions and capabilities to make high-impact discoveries such as these.”
The article “Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides” is at: www.nature.com/articles/s41467-022-28310-y.
This text was originally published by FAPESP Agency according to Creative Commons license CC-BY-NC-ND. Read the original here. READ MORE
More than 50,000 articles in our online library!
Use the categories and tags listed below to access the nearly 50,000 articles indexed on this website.
Advanced Biofuels USA Policy Statements and Handouts!
- For Kids: Carbon Cycle Puzzle Page
- Why Ethanol? Why E85?
- Just A Minute 3-5 Minute Educational Videos
- 30/30 Online Presentations
- “Disappearing” Carbon Tax for Non-Renewable Fuels
- What’s the Difference between Biodiesel and Renewable (Green) Diesel? 2020 revision
- How to De-Fossilize Your Fleet: Suggestions for Fleet Managers Working on Sustainability Programs
- New Engine Technologies Could Produce Similar Mileage for All Ethanol Fuel Mixtures
- Action Plan for a Sustainable Advanced Biofuel Economy
- The Interaction of the Clean Air Act, California’s CAA Waiver, Corporate Average Fuel Economy Standards, Renewable Fuel Standards and California’s Low Carbon Fuel Standard
- Latest Data on Fuel Mileage and GHG Benefits of E30
- What Can I Do?
Donate
DonateARCHIVES
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- December 2023
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- June 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- June 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- December 2012
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- November 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- February 2011
- January 2011
- December 2010
- November 2010
- October 2010
- September 2010
- August 2010
- July 2010
- June 2010
- May 2010
- April 2010
- March 2010
- February 2010
- January 2010
- December 2009
- November 2009
- October 2009
- September 2009
- August 2009
- July 2009
- June 2009
- May 2009
- April 2009
- March 2009
- February 2009
- January 2009
- December 2008
- November 2008
- October 2008
- September 2008
- August 2008
- July 2008
- June 2008
- May 2008
- April 2008
- March 2008
- February 2008
- January 2008
- December 2007
- November 2007
- October 2007
- September 2007
- August 2007
- June 2007
- February 2007
- January 2007
- October 2006
- April 2006
- January 2006
- April 2005
- December 2004
- November 2004
- December 1987
CATEGORIES
- About Us
- Advanced Biofuels Call to Action
- Aviation Fuel/Sustainable Aviation Fuel (SAF)
- BioChemicals/Renewable Chemicals
- BioRefineries/Renewable Fuel Production
- Business News/Analysis
- Cooking Fuel
- Education
- 30/30 Online Presentations
- Competitions, Contests
- Earth Day 2021
- Earth Day 2022
- Earth Day 2023
- Earth Day 2024
- Executive Training
- Featured Study Programs
- Instagram TikTok Short Videos
- Internships
- Just a Minute
- K-12 Activities
- Mechanics training
- Online Courses
- Podcasts
- Scholarships/Fellowships
- Teacher Resources
- Technical Training
- Technician Training
- University/College Programs
- Events
- Coming Events
- Completed Events
- More Coming Events
- Requests for Speakers, Presentations, Posters
- Requests for Speakers, Presentations, Posters Completed
- Webinars/Online
- Webinars/Online Completed; often available on-demand
- Federal Agency/Executive Branch
- Agency for International Development (USAID)
- Agriculture (USDA)
- Commerce Department
- Commodity Futures Trading Commission
- Congressional Budget Office
- Defense (DOD)
- Air Force
- Army
- DARPA (Defense Advance Research Projects Agency)
- Defense Logistics Agency
- Marines
- Navy
- Education Department
- Energy (DOE)
- Environmental Protection Agency
- Federal Energy Regulatory Commission (FERC)
- Federal Reserve System
- Federal Trade Commission
- Food and Drug Administration
- General Services Administration
- Government Accountability Office (GAO)
- Health and Human Services (HHS)
- Homeland Security
- Housing and Urban Development (HUD)
- Interior Department
- International Trade Commission
- Joint Office of Energy and Transportation
- Justice (DOJ)
- Labor Department
- National Academies of Sciences Engineering Medicine
- National Aeronautics and Space Administration
- National Oceanic and Atmospheric Administration
- National Research Council
- National Science Foundation
- National Transportation Safety Board (NTSB)
- Occupational Safety and Health Administration
- Overseas Private Investment Corporation
- Patent and Trademark Office
- Securities and Exchange Commission
- State Department
- Surface Transportation Board
- Transportation (DOT)
- Federal Aviation Administration
- National Highway Traffic Safety Administration (NHTSA)
- Pipeline and Hazardous Materials Safety Admin (PHMSA)
- Treasury Department
- U.S. Trade Representative (USTR)
- White House
- Federal Legislation
- Federal Litigation
- Federal Regulation
- Feedstocks
- Agriculture/Food Processing Residues nonfield crop
- Alcohol/Ethanol/Isobutanol
- Algae/Other Aquatic Organisms/Seaweed
- Atmosphere
- Carbon Dioxide (CO2)
- Field/Orchard/Plantation Crops/Residues
- Forestry/Wood/Residues/Waste
- hydrogen
- Manure
- Methane/Biogas
- methanol/bio-/renewable methanol
- Not Agriculture
- RFNBO (Renewable Fuels of Non-Biological Origin)
- Seawater
- Sugars
- water
- Funding/Financing/Investing
- grants
- Green Jobs
- Green Racing
- Health Concerns/Benefits
- Heating Oil/Fuel
- History of Advanced Biofuels
- Infrastructure
- Aggregation
- Biofuels Engine Design
- Biorefinery/Fuel Production Infrastructure
- Carbon Capture/Storage/Use
- certification
- Deliver Dispense
- Farming/Growing
- Precursors/Biointermediates
- Preprocessing
- Pretreatment
- Terminals Transport Pipelines
- International
- Abu Dhabi
- Afghanistan
- Africa
- Albania
- Algeria
- Angola
- Antarctica
- Argentina
- Armenia
- Aruba
- Asia
- Asia Pacific
- Australia
- Austria
- Azerbaijan
- Bahamas
- Bahrain
- Bangladesh
- Barbados
- Belarus
- Belgium
- Belize
- Benin
- Bermuda
- Bhutan
- Bolivia
- Bosnia and Herzegovina
- Botswana
- Brazil
- Brunei
- Bulgaria
- Burkina Faso
- Burundi
- Cambodia
- Cameroon
- Canada
- Caribbean
- Central African Republic
- Central America
- Chad
- Chile
- China
- Colombia
- Congo, Democratic Republic of
- Costa Rica
- Croatia
- Cuba
- Cyprus
- Czech Republic
- Denmark
- Dominican Republic
- Dubai
- Ecuador
- El Salvador
- Equatorial Guinea
- Eqypt
- Estonia
- Ethiopia
- European Union (EU)
- Fiji
- Finland
- France
- French Guiana
- Gabon
- Georgia
- Germany
- Ghana
- Global South
- Greece
- Greenland
- Guatemala
- Guinea
- Guyana
- Haiti
- Honduras
- Hong Kong
- Hungary
- Iceland
- India
- Indonesia
- Iran
- Iraq
- Ireland
- Israel
- Italy
- Ivory Coast
- Jamaica
- Japan
- Jersey
- Jordan
- Kazakhstan
- Kenya
- Korea
- Kosovo
- Kuwait
- Laos
- Latin America
- Latvia
- Lebanon
- Liberia
- Lithuania
- Luxembourg
- Macedonia
- Madagascar
- Malawi
- Malaysia
- Maldives
- Mali
- Malta
- Marshall Islands
- Mauritania
- Mauritius
- Mexico
- Middle East
- Monaco
- Mongolia
- Morocco
- Mozambique
- Myanmar/Burma
- Namibia
- Nepal
- Netherlands
- New Guinea
- New Zealand
- Nicaragua
- Niger
- Nigeria
- North Africa
- North Korea
- Northern Ireland
- Norway
- Oman
- Pakistan
- Panama
- Papua New Guinea
- Paraguay
- Peru
- Philippines
- Poland
- Portugal
- Qatar
- Romania
- Russia
- Rwanda
- Saudi Arabia
- Scotland
- Senegal
- Serbia
- Sierra Leone
- Singapore
- Slovakia
- Slovenia
- Solomon Islands
- South Africa
- South America
- South Korea
- South Sudan
- Southeast Asia
- Spain
- Sri Lanka
- Sudan
- Suriname
- Swaziland
- Sweden
- Switzerland
- Taiwan
- Tanzania
- Thailand
- Timor-Leste
- Togo
- Trinidad and Tobago
- Tunisia
- Turkey
- Uganda
- UK (United Kingdom)
- Ukraine
- United Arab Emirates UAE
- Uruguay
- Uzbekistan
- Vatican
- Venezuela
- Vietnam
- Wales
- Zambia
- Zanzibar
- Zimbabwe
- Marine/Boat Bio and Renewable Fuel/MGO/MDO/SMF
- Marketing/Market Forces and Sales
- Opinions
- Organizations
- Original Writing, Opinions Advanced Biofuels USA
- Policy
- Presentations
- Biofuels Digest Conferences
- DOE Conferences
- Bioeconomy 2017
- Bioenergy2015
- Biomass2008
- Biomass2009
- Biomass2010
- Biomass2011
- Biomass2012
- Biomass2013
- Biomass2014
- DOE Project Peer Review
- Other Conferences/Events
- R & D Focus
- Carbon Capture/Storage/Use
- Co-Products
- Feedstock
- Logistics
- Performance
- Process
- Vehicle/Engine/Motor/Aircraft/Boiler
- Yeast
- Railroad/Train/Locomotive Fuel
- Resources
- Books Web Sites etc
- Business
- Definition of Advanced Biofuels
- Find Stuff
- Government Resources
- Scientific Resources
- Technical Resources
- Tools/Decision-Making
- Rocket/Missile Fuel
- Sponsors
- States
- Alabama
- Alaska
- Arizona
- Arkansas
- California
- Colorado
- Connecticut
- Delaware
- Florida
- Georgia
- Hawai'i
- Idaho
- Illinois
- Indiana
- Iowa
- Kansas
- Kentucky
- Louisiana
- Maine
- Maryland
- Massachusetts
- Michigan
- Midwest
- Minnesota
- Mississippi
- Missouri
- Montana
- Native American tribal nation lands
- Nebraska
- Nevada
- New Hampshire
- New Jersey
- New Mexico
- New York
- North Carolina
- North Dakota
- Ohio
- Oklahoma
- Oregon
- Pennsylvania
- Puerto Rico
- Rhode Island
- South Carolina
- South Dakota
- Tennessee
- Texas
- Utah
- Vermont
- Virginia
- Washington
- Washington DC
- West Coast
- West Virginia
- Wisconsin
- Wyoming
- Sustainability
- Uncategorized
- What You Can Do
tags
© 2008-2023 Copyright Advanced BioFuels USA. All Rights reserved.
Comments are closed.