We are not accepting donations from people or companies in Florida due to unfair reporting requirements and fees not imposed by any other state.

Call to Action for a Truly Sustainable Renewable Future
August 8, 2013 – 5:07 pm | No Comment

-Include high octane/high ethanol Regular Grade fuel in EPA Tier 3 regulations.
-Use a dedicated, self-reducing non-renewable carbon user fee to fund renewable energy R&D.
-Start an Apollo-type program to bring New Ideas to sustainable biofuel and …

Read the full story »
Business News/Analysis

Federal Legislation

Political news and views from Capitol Hill.

More Coming Events

Conferences and Events List in Addition to Coming Events Carousel (above)

Original Writing, Opinions Advanced Biofuels USA

Sustainability

Home » BioChemicals/Renewable Chemicals, Energy, Federal Agency, Iowa, Process, R & D Focus

Ames Laboratory Announces New Science in Converting Biomass

Submitted by on October 10, 2017 – 12:11 pmNo Comment

(Ames Laboratory/Ethanol Producer Magazine)  In every plant—from trees to crops—there exists a substance that makes up its wood or stems, fiber, and cell walls. This substance is a complex natural polymer called lignin, and it is the second largest renewable carbon source on the planet after cellulose.

This natural abundance has drawn high interest from the research community to chemically convert lignin into biofuels. And if plant life really does hold the building blocks for renewable fuels, it would seem that we are literally surrounded by potential energy sources everywhere green grows.

But untangling the complex chains of these polymers into components, which can be useful for liquid fuel and other applications ranging from pharmaceuticals to plastics, has presented an ongoing challenge to science and industry.

There are currently two common ways of processing lignin. One requires an acid plus high heat, and the other is pyrolysis, or treating with high heat in the absence of oxygen. Besides being energy-consuming processing methods, the results are less than optimal.

(Igor) Slowing and other scientists at Ames Laboratory are working to reach that commercialization goal, experimenting with chemical reactions that decompose lignin models at low temperatures and pressures. There are already known ways of salvaging useful byproducts out of lignin through the addition of a stabilization process. But Slowing and his research team took both the decomposition and stabilization processes further, by combining the two into one multi-functional catalyst, using phosphate-modified ceria.

Further reading: “Phosphate modified ceria as a Brønsted acidic/redox multifunctional catalyst,” authored by Nicholas C. Nelson, Zhuoran Wang, Pranjali Naik, J. Sebastian Manzano, Marek Pruski, and Igor I. Slowing, and published in the Journal of Materials Chemistry A. Also, “Transfer hydrogenation over sodium-modified ceria: Enrichment of redox sites active for alcohol dehydrogenation,” authored by Nicholas C. Nelson, Brett W. Boote, Pranjali Naik, Aaron J. Rossini, Emily A. Smith and Igor I. Slowing, and published in the Journal of CatalysisREAD MORE

Research in Chemically Transforming Lignin into Biofuels (AZO CleanTech)

Related Post

Tags: , , , ,

Comments are closed.