

Abengoa Bioenergy Hybrid Biorefinery Concept

Biomass 2009: Fueling Our Future

March 17, 2009

National Harbor, Maryland

ABENGOA BIOENERGY

Abengoa Overview

Abengoa is a technology company that applies innovative solutions for sustainable development in infrastructure, environmental and energy sectors. It is present in over 70 countries where it operates through its five Business Units: Solar, Bioenergy, Environmental Services, Information Technology, and Industrial Engineering and Construction.

Industrial Engineering & Construction

With engineering...
we build and operate conventional
and renewable energy power plants,
power transmission systems, and
industrial infrastructures

Bioenergy

With biomass ... we produce ecological biofuels and animal feed

Information Technology

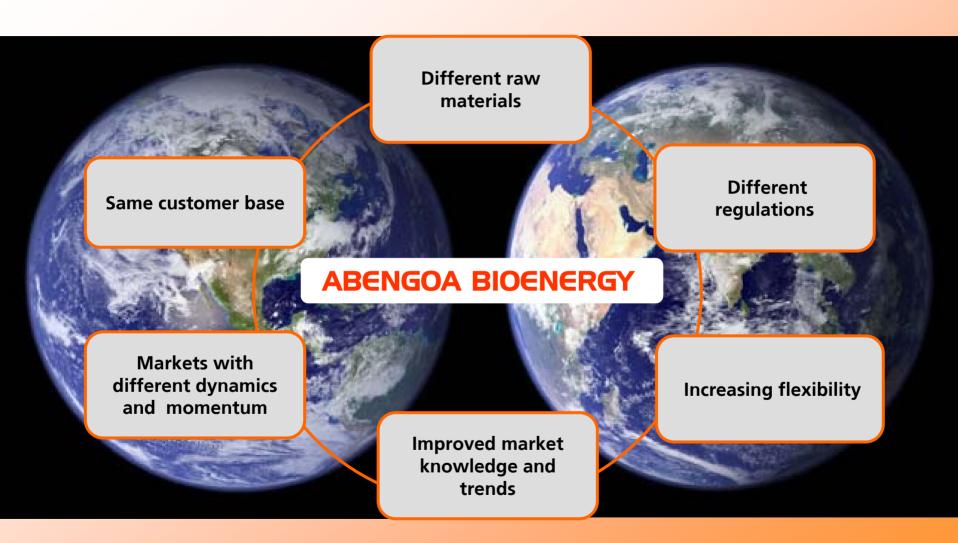
Innovative Solutions for Sustainability

Environmental Services

With waste ...
we produce new materials
through recycling, and we treat
and desalinate water

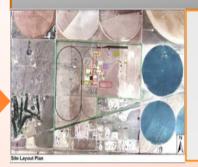
Solar

With the sun ... we produce thermoelectric and photovoltaic electric energy


Focus Abengoa

With social and cultural policies ... we contribute to economic progress and the conservation of the environment in communities where Abengoa is present

Global player ethanol advantages


Hybrid Refinery

ABENGOA BIOENERGY

...and leading the 2nd Generation

Commercial Hybrid Biomass Plant Hugoton (KS, US)

- ► Capacity: 12 MG and 40MWe per production year
- Raw material : Corn stover
- Technology : Enzymatic Hydrolysis & Gasification Technology
- Objective : Demonstrate biomass conversion commercial viability
- Start-up Operations : 2011 estimated

Biomass Demonstration Plant in BCL (Salamanca, Spain)

- Capacity: 1.3 MGPY
- Raw material : Wheat and Barley Straw
- Technology: Enzymatic Hydrolysis (glucose)
- Objective : Demonstrate biomass-to-ethanol process technology at commercial scale
- Start-up Operations: 2009

Biomass Pilot Plant in York (NE, US)

- Technology : Enzymatic Hydrolysis (glucose & xylose)
- Objective : Competitive process with grain ethanol
- Start-up: 2007

2.1 Project Description

- Cellulosic feedstocks, 1100* dry metric tons per day total
- Enzymatic Hydrolysis, 400 dry metric tons per day
 Ethanol, 12 million gallons per year, qualified as Cellulosic Biofuel
 Co-products
- Gasification Process, 300 dry metric tons per day
 Synthetic gas (syngas), 157 MMBtu to high-pressure water-tube boilers
- Cogeneration, 400 dry metric tons per day feedstock, 200 tons per day stillage wet cake 44-MW steam turbine
- Starch Ethanol, 88 million gallons per year ethanol, 750 thousand tons per year WDGS On hold due to market conditions

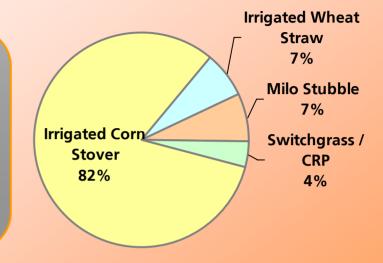
Biomass Procurement

 Procure, store, haul, and process all Biorefinery feedstocks

Co-gen Plant, co-located

 Biomass feedstocks, 600 dry metric tons per day

First of its kind combined Advanced Biofuels and Cellulosic Biofuels facility to seek financing.


Abengoa Bioenergy Hybrid of Kansas

- First commercial facility of Abengoa Bioenergy's Cellulosic Ethanol technology
- A \$500 million plus project, supported by a \$76 million grant from the Department of Energy plus an equity commitment from Abengoa Bioenergy. Project start of construction, 2nd Half of 2009, operation in 2011
- Located in South West Kansas
- Opportunity to leverage infrastructure at many plant operations
- Key first project in the successful growth of Abengoa's Cellulosic Ethanol Business and the Nation's Cellulosic Ethanol Industry

ABHK Biomass Input Today

- **Estimated 300,000 550,000 acres of land**
- ▶ 1750 "as is " tons of biomass per day
- > 750,000 "as is " tons of biomass per year

Irrigated Wheat Straw

Milo Stubble

Switchgrass

Irrigated
Corn Stover

CRP Grassland

ABHK Biomass Input Tomorrow

Up To 100% Switchgrass

Reasons

- Little to no fertilizer required
- Lower input costs
- Can be grown on poor soils
- Tolerant of flooding and drought
- Large potential from CRP and
- underutilized acres

Challenges

- Establishment cost for producer
- No immediate revenue for producer
- Availability
- Harvest and Collection methods

CRP Grassland

Financing

- Equity (competition for cash)
- Loan Guarantees
- Credit Rating
- Credit Subsidy Risk

Challenges/barriers

- Blend Wall
- Indirect Land Used
- NEPA
- Timing (financial situation)
- Technology Risk
- Raw Material risk
- Market Risk

Policies

- Loan Guarantees
- Biomass Crop Assistance Program (BCAP)
- Indirect land Used
- GHG cap and trade
- Renewable Portfolio Standard

BCyL Biomass Ethanol Plant

