The Future of Transportation Fuels and Improved Ecological Plans Lies in Advanced Biofuels

May 4th 2010

Emir Dogdibegovic
Hood College, 401 Rosemont Avenue, Frederick, MD, 21701
Advanced Biofuels USA, 507 North Bentz Street, Frederick, MD, 21701
http://advancedbiofuelsusa.info

About Advanced Biofuels USA

• 501(c)3 nonprofit organization.

Mission statement:

to promote public understanding, acceptance, and use of advanced biofuels

Why this practicum site?

- Personal interest
- Future alternative
- Very interesting field to look at

The reasons the world needs Advanced Biofuels

Energy Security

Military Strategic Flexibility

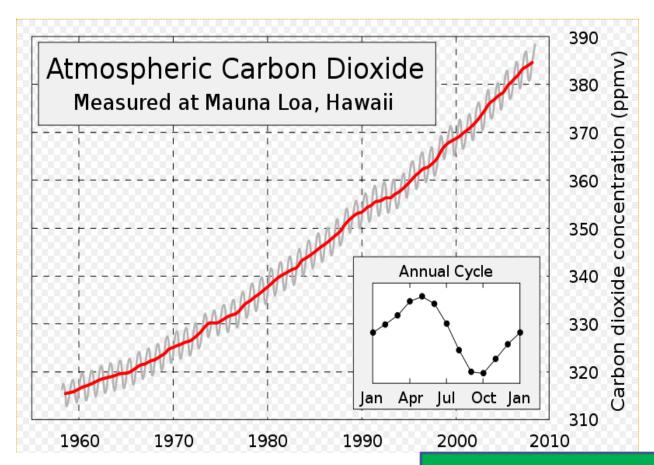
Climate Change Mitigation

Rural Economic Development

The Future of Transportation Fuels and Improved Ecological Plans Lies in Advanced Biofuels

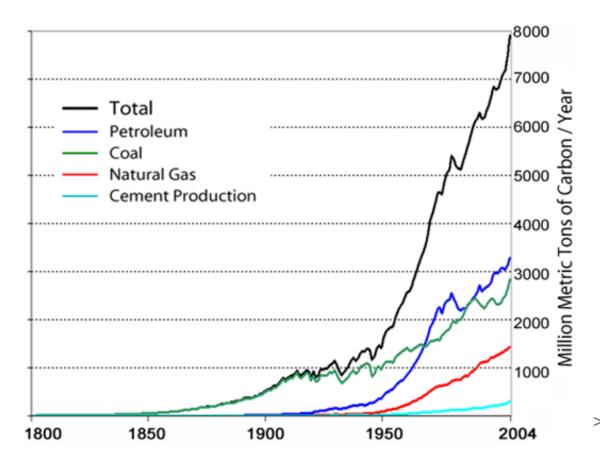
http://ecology.com/ecology-today/wp-content/uploads/2008/12/biofuels-dtu-danish-center-for-b.jpg

Terminology


 Advanced Biofuels are high-energy liquid transportation fuels derived from: low nutrient input/high per acre yield crops; agricultural or forestry waste; or other <u>sustainable</u> biomass feedstock.¹

Sustainability

Renewable


¹ Ivancic, M. Joanne. Advanced Biofuels USA. <u>Truly Sustainable and Renewable Future</u>. http://advancedbiofuelsusa.info (accessed on April 23, 2010).

Carbon dioxide concentration measured at Mauna Loa, Hawaii

Al Gore "An Inconvenient Truth"

Global Fossil Carbon Emissions

 $> 3 \cdot 10^{12} \ kg \approx 6.6 \cdot 10^{12} \ lbs.$

<u>United States Department of Energy</u>. *A Compendium of Data on Global Change*. <u>Carbon Dioxide Information</u>
<u>Analysis Center</u>, Oak Ridge National Laboratory, Oak Ridge, Tenn., U.S.A.

Resources of advanced biofuels

- Advanced biofuels can be produced from non-food, non-feed, sustainably grown feedstock and agricultural wastes.
- perennial grasses (switchgrass, miscanthus),
 jatorpha, camelina, and poplar
- agricultural or food processing waste
- "forest waste"
- new technologies are looking into municipal solid waste

Classification

- First generation biofuels

Advanced Biofuels

- Second generation biofuels
- Third generation biofuels
- Fourth generation biofuels

Goals

The Energy Independence and Security Act of 2007

- Produce 36 billion gallons of renewable fuels by 2022
- 21 bilion gallons from advanced biofuels (more than 58%)
- 16 billion gallons from advanced cellulosic biofuel
- 11.1 billion gallons was already produced


The Energy Independence and Security act of 2007. <u>The Effect of Private Wire Laws on Development of Combined Heat and Power Facilities.</u> http://www.oe.energy.gov (accessed on April 20, 2010).

United States Department of Energy. Office of Science. <u>Production of Biofuels from Biomass.</u> http://www.science.energy.gov (accessed on April 19, 2010).

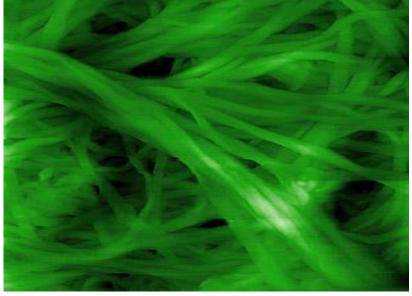
United States Department of Energy. <u>Obama Announces Steps to Boost Biofuels,Clean Coal.</u>3 February 2010. http://www.energy.gov (accessed on April 19, 2010).

Who is investing

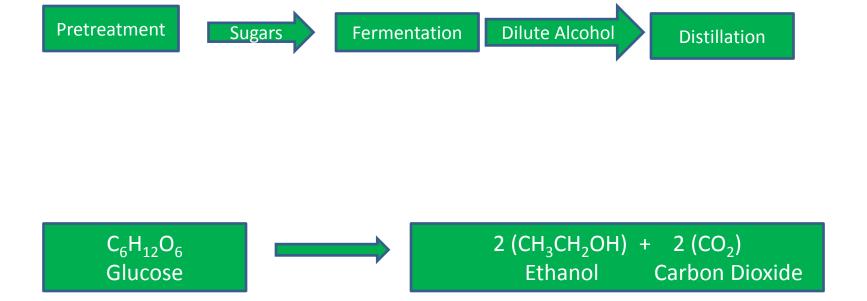
- The U.S. Department of Energy (DOE)
- \$1 billion for research and development project that will enhance the nation energy supply through increased energy efficiency and clean energy sources
- \$114 million to build small-scale biorefinery projects in Colorado, Missouri, Oregon, and Wisconsin

Available technologies

- Fermentation
- Acid hydrolysis
- Enzymatic hydrolysis
- Gasification
- Thermocehmical reactions
- Catalysys
- Algae processes



Ethanol From Cellulosic material


Ethanol derived from cellulose

Ethanol derived from hemicellulose

Ethanol derived from cellulose

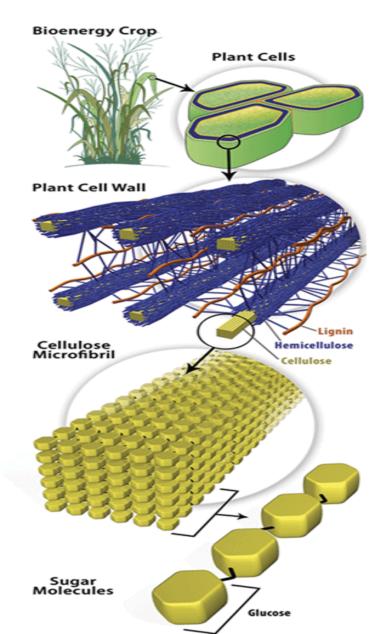
Ethanol derived from hemicellulose

 random, amorphous structure with not so great strength as cellulose

more accessible to degradative enzymes

five carbon sugars

Ethanol derived from cellulosic material


Technologies

acid hydrolysis

enzymatic hydrolysis

thermochemical processes

Hidden Treasure in Bioenergy Crops

Advantages of Cellulosic Resources for Ethanol Production

 Abundance and widespread volume (forests hold about 80% of the world's surface biomass)

Affordable

Inexpensive feedstock

Disadvantages of Cellulosic Resources

- Pretreatment step: the hemicelluloses break down into five carbon sugars
- Time consuming process
- mix of 5 and 6-carbon sugars formed during the hemicelluloses hydrolysis
- difficulty in "unwrapping" and solubilizing the cellulose and hemicelluloses
- ethanol mixes with water, it might freeze in existing pipeline systems.

Alternative to Ethanol might be Butanol

Energy density increased, higher energy content

Less corrosive

More hydrophobic

Alternative to Ethanol might be Butanol

• 90 to 95% of the energy density of gasoline

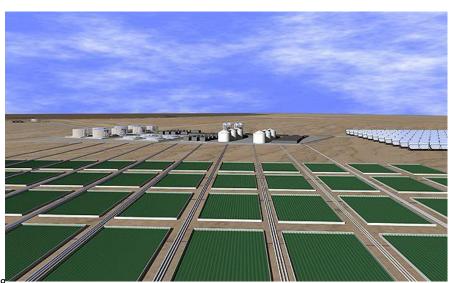
Can be used in gasoline engines

Can be pipelined in existing systems today

Companies that are interested

- British Petroleum and Dupont
- Chevron with Georgia Tech and Weyerhaeuser
 - -loking into biobutanol from forestry products as feedstock

- Honda and Research Institute of Innovative Technology (RITE)
 - -butanol using bacteria


Advanced Biofuels from Algae

High yields of oil

 Don't require arable lands and potable water

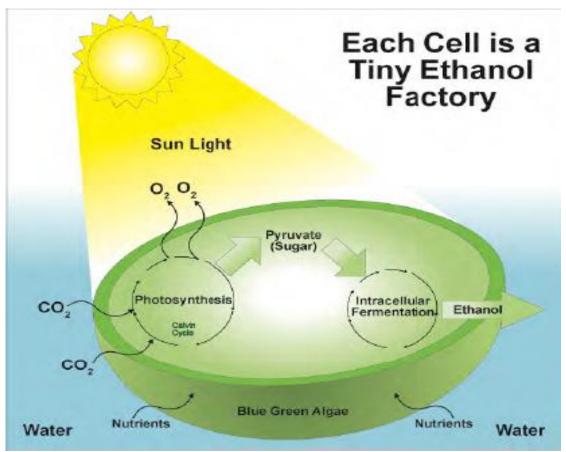
 Experimental production has been done in the laboratories

http://www.matternetwork.com/images/Matter/algae4.jpg http://images.businessweek.com/ss/09/04/0416 biofuel/image/017 algenol.jpg

Methods of oil extraction

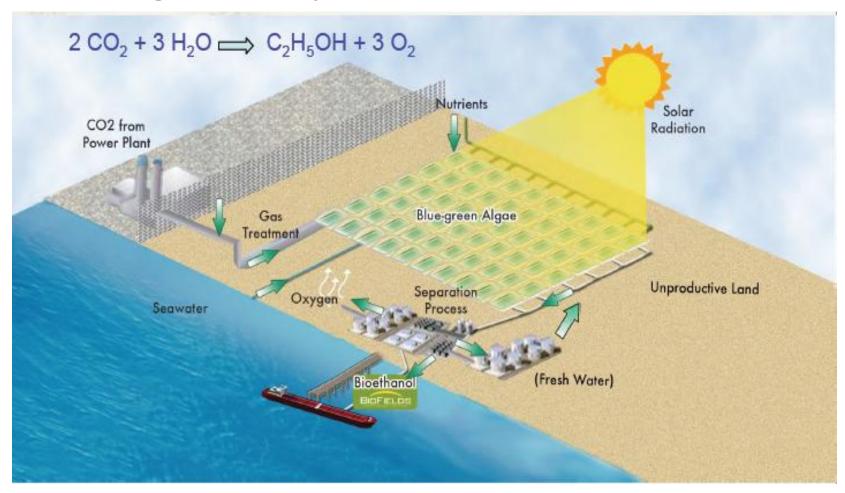
- Expeller/press
- Hexane solvent
- Supercritical fluid extraction
- Drying
- Electro-shock principles

Electro-shock principles


Phycal company located in Cleveland

 Solix: using the system developed by Los Alamos National Laboratory

Algenol Biofuels, Bonita Springs in Florida


Algenol Biofuels

 Algenol links photosynthesis with the natural enzymes that convert sugars directly into ethanol.

http://www.algenolbiofuels.com/Algenol%20101%20Sept%202009.pdf

Biological Capture of Carbon Dioxide

Why Should We Switch to Advanced Biofuels

Noticable reduce in carbon emissions
more than 138 million metric tons a year in U.S.

 Reduce dependence on foreign oil by more than 328 million barrels a year

Sustainable and renewable future

Challenges

Establish appropriate technology for the industrial- scale production

Establish appropriate infractructure

Educate the public

Convince the government

References

Ben A. Thorp. *Advances, Developments, Applications in the Field of Cellulosic Biomass*. <u>Key Metric Comparison of Five Cellulosic Biofuel Pathyways</u>. Pg 25. www.tappi.og/bioenergy (accessed on April 23, 2010).

Brekke K. *Ethanol Org.* <u>Butanol, An Energy Alternative.</u> http://www.ethanol.org_(accessed on April 21, 2010). Ivancic, M. Joanne. Advanced Biofuels USA. *Advanced Biofuels.* <u>The Advancement of Bio-Jetfuels.</u> 31 March 2010; pg 7. Printed source. http://advancedbiofuelsusa.info (accessed on April 20, 2010)

Ivancic, M. Joanne. Advanced Biofuels USA. Advanced Biofuels. Algae And Company. 31 March 2010; pg 6. Printed source. http://advancedbiofuelsusa.info (accessed on April 20, 2010).

Ivancic, M. Joanne. Advanced Biofuels USA. *Advanced Biofuels*. Fulfiling The Promise of Advanced Biofuels. 31 March 2010; pg 5.Printed source. http://advancedbiofuelsusa.info (accessed on April 23, 2010).

Ivancic, M. Joanne. Advanced Biofuels USA. *Advanced Biofuels*. <u>Grow, Baby, Grow.</u> 31 March 2010; pg 3. Printed source. http://advancedbiofuelsusa.info (accessed on April 20, 2010). Ivancic, M. Joanne. Advanced Biofuels USA. *Advanced Biofuels*. <u>Making Advanced Biofuels</u>. 31 March 2010; pg 4. Printed source. http://advancedbiofuelsusa.info (accessed on April 20, 2010).

Ivancic, M. Joanne. Advanced Biofuels USA. <u>Truly Sustainable and Renewable Future</u>. http://advancedbiofuelsusa.info (accessed on April 23, 2010).

J. Janick, A. Whipkey. *Trends in New Crops and New Uses*. <u>Ethanol From Cellulose: A General Review.</u> 2002, pg. 17-0.http://www.hort.purdue.edu (accessed on April 20, 2010).

Kozak, Robert; Advanced Biofuels USA. New Engine Technologies Could give New Life (and Large Markets) to Ethanol. http://advancedbiofuelsusa.info (accessed on April 18, 2010).

Laux, Ben; All Business Company. Low-vapor-pressure solvents can reduce VOC emissions. emissionshttp://www.allbusiness.com (accessed on April 22, 2010).

Advanced Biofuels USA. About Advanced Biofuels USA. http://advancedbiofuelsusa.info (accessed on April 23, 2010).

Advanced Biofuels USA. *Advanced Biofuels*. The next Technology Revolution will Fuel the Future. 31 March 2010; pg 2. Printed source. http://advancedbiofuelsusa.info (accessed on April 20, 2010)

Algenol Biofuels. http://www.algenolbiofuels.com (accessed on April 25, 2010).

Biofuel Digest. *Shock wave:* Camelina Biofuels Break Sound Barrier in Navy F-18 Trial. 23 April 2010. http://biofuelsdigest.com (accessed on April 20, 2010).

Blue Fire Ethanol. Technology; The Process. http://bluefireethanol.com/technology (accessed on April 24, 2010).

Commercially Viable Renewable Fuels. 26 February 2010. http://www.energy.gov (accessed on April 19, 2010).

Dupont. <u>Dupont and BP Disclose Advanced Biofuels Partnership Targeting Multiple Butanol Molecules.</u> 14 February 2008. http://www2.dupont.com(accessed on April 22, 2010).

Elmhurst College. Chemistry Department. Cellulose. http://www.elmhurst.edu (accessed on April 20, 2010).

The Energy Independence and Security act of 2007. <u>The Effect of Private Wire Laws on Development of Combined Heat and Power Facilities.</u> http://www.oe.energy.gov (accessed on April 20, 2010).

Ethanol. Ethanol distillation. http://ethanol4car.com (accessed on April 23, 2010).

Genomic Science Program. Fuel Ethanol Production.

http://www.genomicscience.energy.gov (accessed on April 20, 2010).

Gevo. What we do, and Technology. http://www.gevo.com/faqs.php (accessed on April 20, 2010).

Green Car Congress. <u>RITE Develops Biobutanol for Blending in Diesel Fuels</u>. 13 August 2007. http://www.greencarcongress.com (accessed on April 23, 2010

Greentechmedia. <u>EPA Issues Renewable Fuel Standards: What It Means for 1st and 2nd Generation Biofuels.</u> 5 February 2010. http://www.greentechmedia.com (accessed on April 22, 2010). Klinke HB, Thomsen AB, Ahring BK (2004) <u>Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26.</u>

The light party. Butanol, Advanced Biofuels. http://www.lightparty.com (accessed on April 21, 2010).

National Renewable Energy Laboratory. A Look back at the U.S. Depertment of Energy's Aquatic Species Program: Biodiesel from Algae. http://www.nrel.gov/docs/legosti/fy98/24190.pdf (accessed on April 20, 2010). Rensselaer Polytechnic institute. Department of Chemistry. Hemicellulose. http://www.rpi.edu (accessed on April 20, 2010).

State Energy Conservation Office. <u>Cellulosic ethanol.</u>
http://www.seco.cpa.state.tx.us (accessed on April 21, 2010).
Scientific American. *Energy and Sustainability*. <u>Jet Biofuel Ready for Take off.</u> 29 May 2009.
http://www.scientificamerican.com (accessed on April 22, 2010).

United States Department of Energy. *Energy Eficienty and Renewable Energy*. <u>Biomass Program 2007;</u> <u>Growing America's Energy Future. Technology Pathways. Convert in Integrated Biorefineries.</u> Page 9. www.eere.energy.gov (accessed on April 22, 2010).

United States Department of Energy. *A Compendium of Data on Global Change*. <u>Carbon Dioxide Information Analysis Center</u>, Oak Ridge National Laboratory, Oak Ridge, Tenn., U.S.A.

United States Department of Energy. <u>DOE to Invest up to \$33.8 Million to Further Development of Commercially Viable Renewable Fuels</u>. 26 February 2010. http://www.energy.gov (accessed on April 19, 2010).

United States Department of Energy. <u>New Independent Analysis Confirms Climate Bill Costs About a Postage Stamp a Day.</u>4 August 2009. http://www.energy.gov (accessed on April 19, 2010).

United States Department of Energy. <u>Obama Announces Steps to Boost Biofuels, Clean Coal.</u>3 February 2010. http://www.energy.gov (accessed on April 19, 2010).

United States Department of Energy. *Office of Science*. <u>Production of Biofuels from Biomass</u>. http://www.science.energy.gov (accessed on April 19, 2010).

United States Department of Commerce. *National Oceanic and Atmospheric Administration*. Oil and Chemical Spills. http://oceanservice.noaa.gov (accessed on April 18, 2010).

Voice of America. *USA*. Oil from Sunken Rig Threatens Gulf of Mexico Shorelines. http://www1.voanews.com (accessed on April 19, 2010).

The Washington Post. *Earth Day*. <u>Environmental movement 40 years later, Obama administration message, saving the planet.</u> April 22, 2010. http://www.washingtonpost.com (accessed on April 25, 2010)

ACKNOWLEDGEMENTS

- Dr. Craig Laufer
- Ms. Joanne M. Ivancic
- Mr. Robert Kozak
- Advanced Biofuels USA
- Hood College

