transportenergy strategies

QUANTIFYLING ETHANOL CARBON INTENSITY IN GASOLINE BLENDS

Nigel N. Clark, Tammy Klein and David L. McKain, Jr., Transport Energy Strategies &

> Terrence Higgins THiggins Energy Consulting

Coordinating Research Council 29th CRC Real World Emissions Workshop Long Beach, CA 10-13 March 2019

- Gasoline composition affects two separate Greenhouse Gas (GHG) measures
 - Carbon dioxide equivalent production at the tailpipe is regulated by the EPA
 - Total contribution of gasoline to the global GHG inventory is calculated as the product of gasoline consumed and its well-to-wheels (WTW) carbon intensity (CI)
- There are two different values for CI of a fuel
 - Tailpipe: Chemical CI is the ratio of actual carbon mass (as carbon dioxide mass) in the fuel to the net heating value of the fuel (g/MJ)
 - GHG Inventory: WTW CI includes fuel production and transportation, renewable components
- Most gasoline in the US contains ethanol, usually at 10% by volume (E10)
- Studies funded by the Urban Air Initiative (UAI) examined the quantitative tailpipe and WTW CI reductions offered by ethanol blending
- Small improvements in engine energy efficiency due to blending represent an additional adjustment (e.g. EPA Tier 2 / Tier 3 study)

Chemical Carbon Intensity

- Tank-to-Wheels (TTW) concept
- CI = (Grams CO₂)/LHV
- Ethanol + Blendstock for Oxygenate Blending (BOB) = Market Gasoline
- The BOB is a complex mixture of paraffins, isoparaffins, olefins, napthenes and aromatics
- Paraffins have high heating value and low carbon content, hence low CI
- Aromatics have low heating value and high carbon content, hence high CI
- Ethanol CI is slightly lower (71 g/MJ) than for a typical BOB or gasoline (about 72.5 g/MJ)

PARAFFIN SPECIES	FORMULA	Grams CO ₂ /gram	LHV (MJ/kg)	Grams CO ₂ /MJ	
Butane	C4H10	3.028	45.3	66.9	
Hexane	C6H14	3.064	44.7	68.6	
Octane	C8H18	3.082	44.4	69.5	
Decane	C10H22	3.093	44.2	70.0	
ISO-PARAFFIN SPECIES					
Iso-butane	C4H10	3.029	45.2	67.1	
2,2,4 Trimethylpentane	C8H18	3.082	44.0	70.1	
2,3,4 Trimethylpentane	C8H18	30.82	44.3	69.6	
3-Ethylhexane	C8H18	3.082	44.3	69.6	
3-Methyloctane	C9H20	3.088	44.5	69.4	
AROMATIC SPECIES					
Benzene	C6H6	30380	40.1	84.3	
ortho-Xylene	C8H10	3.316	40.8	81.3	
para-Xylene	C8H10	3.316	40.4	82.2	
Indane	C9H10	3.352	40.3	87.4	
Napthalene	C10H8	3.434	38.8	88.6	
NAPTHENE SPECIES					
Cyclopentane	C5H10	3.138	43.8	71.7	
Cyclohexane	C6H12	3.138	43.4	72.3	
1,1-Dimethyl-cyclohexane	C8H16	3.138	43.2	72.6	
n-Butyl-cyclohexane	C10H20	3.138	43.9	75.2	
OLEFIN SPECIES					
Butene-2	C4H8	3.138	44.7	70.2	
2-Methyl-pentene-1	C6H12	3.138	44.2	74.6	
Octene	C8H16	3.138	44.2	73.3	
1,3-Pentadiene	C5H8	3.230	44.5	76.3	
ALCOHOL SPECIES					
Ethanol	C2H5OH	1.953	26.9	71.0	

Ethanol – Aromatic Tradeoff

- Finished gasoline must meet octane requirement: AKI = (RON+MON)/2
- Ethanol has a high Blending Octane Number (BON), allowing adjustment of the BOB AKI
- Model considers EIA refinery operating and capacity data, gasoline demand, blend component properties, sulfur and benzene reductions and the EPA fuel trends report
- Ethanol increase is associated with a decrease in aromatics (10% increase implies 8.9% decrease)

Aromatic and Refinery Octane Trends (Model, EPA data) (Recent aromatic rise artifact due to dye shortage)

	Reduction in Aromatic Content				
Model 2006-2013 Calculated, Extrapolated	9.2%				
Model Calculated E0-E10	9.0%				
Actual EPA Trends Data Extrapolated ¹	9.7%				
Actual EPA Online Data Extrapolated ¹	8.6%				
EPA Tier 3 Modeling Extrapolated	8.2%				
Average of Above	8.9%				
¹ Adjusted for changes in gasoline sulfur and benzene.					

Changes in aromatics in response to 10% ethanol addition

Modeled Market Fuel Composition

Aromatic and Paraffin Species: Texas Survey Data

- E10 market data available from 2017 Texas Summer Fuels Survey, providing base case
- Several Market Compositions modeled
 - Maintaining current refinery production and increasing exports for ethanol change
 - Reducing refinery production for domestic demand & keep exports constant
 - o Splash Blending with E10
 - Summer Regular, Winter Regular (low aromatic), Summer Premium (high aromatic) baselines
- CI and CI reduction versus projected E0 composition computed.

	RON	Aromatics	Carbon	Energy	C Intensity	CO2 CI	CI Reduction
		vol%	wt%	MBTU/#	#C/MMBTU	g/mg Joule	% vs E0
EO	92.4	29.9	86.60	114.4	46.67	73.52	
E10 w BOB	93.0	21.7	82.34	109.9	46.01	72.48	-1.41%
E15 w BOB & Prod	93.3	17.9	80.14	107.4	45.63	71.89	-2.23%
E15 w BOB Demand	93.4	17.2	80.06	107.2	45.55	71.76	-2.40%
E15 Splash w E10 BOB	94.6	20.3	80.37	107.9	45.86	72.25	-1.74%
E20 w BOB & Prod	93.3	15.4	78.14	105.3	45.41	71.54	-2.70%
E20 w BOB Demand	93.4	14.0	77.98	105.0	45.25	71.29	-3.04%
E20 Splash w E10 BOB	96.0	19.2	78.49	106.0	45.76	72.09	-1.95%

Ethanol, Aromatics and CI for summer regular scenarios

Tailpipe Blending Cl

Ethanol lowers CI in three ways

- 1. Ethanol has lower CI than BOB or finished gasoline
- Ethanol enables aromatic reduction, reducing CI of blend (highest contribution)
- Ethanol blend fuel alters energy efficiency and CO₂ production of the vehicle engine (R-factor)
- Way 3 is demonstrated by EPA Tier 2/ Tier 3 Certification Fuel report (1.31% lower CI -> 1.66% lower CO₂)

Viewing ethanol as the enabler for ways 1 and 2 assigns a reduced tailpipe *Blending* CI (BCI) to Ethanol

Example: $1 MJ x CI_{finished gasoline} = 0.069 MJ x BCI_{ethanol} + 0.931 MJ x CI_{E0}$

$$BCI_{ethanol} = \frac{1 MJ x CI_{E10} - 0.931 MJ x CI_{E0}}{0.069 MJ}$$
$$= 58.9 \frac{g CO_2}{MJ}$$

	Ethanol			Petroleum			Total	Ethanol
	Energy (MJ)	TTW CI (g/MJ)	TTW CO2 (g/MJ)	Energy (MJ)	TTW CI (g/MJ)	TTW CO2 (g/MJ)	TTW CO2 (g)	BCI (g/MJ)
E0 w BOB	0	71.0	0.0	1	73.5	73.5	73.5	N/A
E10 w BOB & Prod	0.069	71.0	4.9	0.931	72.6	67.6	72.5	58.9
E15 w BOB & Prod	0.106	71.0	7.5	0.894	72.0	64.4	71.9	58.3
E20 w BOB & Prod	0.144	71.0	10.2	0.856	71.7	61.4	71.6	60.3

1 MJ Basis: E10, E15 & E20 Tailpipe BCI values are 17% lower than pure ethanol chemical CI

Well-to-Wheels (WTW) GHG Analysis

- WTW CI analysis differs from Tailpipe CI
- Petroleum gasoline is assigned its tank-to-wheels chemical CI (about 72.5 g/MJ), adjusted upward for production, refining and transportation impacts (typical total WTW 93 g/MJ)
- Ethanol from corn (US) is deemed renewable and assigned zero chemical CI, but is assigned CI for agricultural energy, fertilizer, production, transportation and land-use change (LUC)
 - Efficiency of agriculture is rising, which lowers Ethanol CI (ICF, Lee et al.)
 - Ethanol is assigned CI credits for useful byproducts (e.g. corn oil)
 - LUC CI prediction varies substantially between studies
- Greenhouse gases, Regulated Emissions, and Energy use in Technologies (GREET) model has a 20+ year history. Wang et al. (2021): 43,800 GREET users globally in 2020
- Ethanol WTW CI 43.4% lower than for gasoline (GREET); 38% lower (CARB); 39.7% & 44.3% lower (ICF/USDA); 46% lower (Scully et al.)
- Lesser reduction for older studies and high LUC components

Applying BCI to WTW CI

- Published models are for pure or adulterated ethanol
- Gasoline blending advantage of reduced aromatics not considered: BCI is lower than CI.
- Using GREET Ethanol CI (52.4 g/MJ), BCI for E10 & E15 is 40 g/MJ; BCI for E20 is 42g/MJ
- Equivalently, WTW CI for E15 blend is 9.4% below E0

Blend (1MJ)	Ethanol	Ethanol	Ethanol	Petroleum	Petroleum	Petroleum	Total	Ethanol
	Energy	WTW CI	WTW CO2	Energy	WTW CI	WTW CO2	WTW CO 2	BCI
	(MJ)	(g/MJ)	(g)	(MJ)	(g/MJ)	(g)	(g)	(g/MJ)
E0 w BOB	0	N/A	0.00	1	92.6	92.6	92.60	N/A
E10 w BOB & Prod	0.069	52.4	3.62	0.931	91.7	85.37	88.99	40.26
E15 w BOB & Prod	0.106	52.4	5.55	0.894	91.1	81.44	87.00	39.75
E20 w BOB & Prod	0.144	52.4	7.55	0.856	90.8	77.72	85.27	41.70

92.6 g/MJ is gasoline CI from GREET

Comparison & Conclusions

COMPARATIVE IMPACT

- A gasoline vehicle emits approximately twice the CO₂ equivalent of a BEV powered by a natural gas power plant
 - Gas production & transmission
 - Upstream methane emissions
 - Powerplant efficiency
 - Transmission efficiency
 - Charging efficiency
 - Cabin heat
- 1 MJ of blended ethanol displacing 1MJ of gasoline has a similar GHG reduction
 - Aromatic decrease reduces CI
 - Ethanol itself has low WTW CI
- BCI effectiveness of ethanol encourages use alongside BEV & sustainable grid adoption
 - Immediate benefit with existing fleet vehicles

CONCLUSIONS

- Ethanol enables reduction of aromatics in gasoline while maintaining octane number
- Tailpipe CO₂ reduced by 2.2% for E15 vs E0
- Assigning benefit to ethanol supports BCI concept
- Ethanol BCI 17% lower than chemical CI
- WTW CI for ethanol and petroleum includes multiple upstream components
- On GREET basis, WTW BCI for ethanol (e.g. E10, E15) is 40 g/MJ compared to 92.6 for E0 gasoline
- Ethanol has far higher GHG benefits in blends than as a pure fuel

Two detailed reports

Quantifying Ethanol CI Benefits in Gasoline Composition

https://www.transportenergystrategies.com/wpcontent/uploads/sites/7/2021/10/Tasks2-4_FIN_Oct2021.pdf

Well-to-Wheels Carbon Intensity for Ethanol Blended Fuels

https://www.transportenergystrategies.com/wpcontent/uploads/sites/7/2021/09/Well-to-Wheels_CI_FIN.pdf

<u>REFERENCES</u> (see reports for additional references)

- > EPA 2018 Environmental Protection Agency Tier 3 Certification Fuel Impacts Test Program EPA-420-R-18-004
- California Air Resources Board (CARB). 2021a. Low Carbon Fuel Standard Program. "Substitute Pathways and Default Blend Levels for LCFS Reporting for Specific Fuel Transaction Types." Accessed August 2021
- Wang, M., Lee, U., Kwon, H. and Xu, H., 2021. "Life-Cycle Greenhouse Gas Emission Reductions of Ethanol with the GREET Model," National Ethanol Conference, February 17, 2021
- Lee, U., Kwon, H., Wu, M., and Wang, M. 2021. "Retrospective analysis of the U.S. corn ethanol industry for 2005–2019: Implications for greenhouse gas emission reductions," DOI: 10.1002/bbb.2225
- Rosenfeld, J., Lewandrowski, J., Hendrickson, T., Jaglo, K., Moffroid, K., and Pape, D. 2018. "A Life-Cycle Analysis of the Greenhouse Gas Emissions from Corn-Based Ethanol." ICF Report for USDA: Contract No. AG-3142-D-17-0161. 2018
- Scully, M., Norris, G., Alarcon, T. and MacIntosh, D., 2021." Carbon intensity of corn ethanol in the United States: state of the science," Environ. Res. Lett. 16 (2021) 043001 DOI: 10.1088/1748-9326/abde08