

Fuels of Tactical Use to the DON

30 Jan 2014

Presented To: Farm To Fleet Industry Day

Presented By: Rick Kamin Navy Fuels Lead

Navy Tactical Fuel Specifications

JP-5

- Revision V issued July 2013
- Includes up to 50% blends of Fischer Tropsch and HEFA
- Cites ASTM D7566 Appendices A1 and A2 with modifications to some properties

F-76

- Revision N target issue date Feb 2014
- Revision will include:
 - Up to 50% blends of Fischer Tropsch and HEFA
 - Lower max sulfur to 15 ppm

Differences Between JP-5 and Commercial Aviation Fuel

JP-5 (MIL-DTL-5624V)	Requirements	Commercial Aviation (Jet A)	
60°C (min)	Flash Point	38°C (min)	
-46°C	Freeze Point	-40°C	
.788845 kg/L	Density	.775840 kg/L	
40 (min) Alt Fuel blends only	Derived Cetane Number	No Requirement	
13.4 mass% (min)	Hydrogen Content	No Requirement	
AO, CI/LI, FSII Required	Additives*	Additives Optional	

*AO – Antioxidants CI/LI - Corrosion Inhibitor / Lubricity Improver FSII - Fuel System Icing Inhibitor

4

F-76 Applications

Differences Between F-76 and ISO 8217

F-76 (MIL-DTL-16884M)	Requirement	ISO 8217
12.5 wt% (min)	Hydrogen Content	Not Specified
Ca: 1.0mg/kg Na+K: 1.0mg/kg Pb: 0.5mg/kg V: 0.5mg/kg	Metal Content	Not Specified
-1°C (max)	Cloud Point	Not Specified
10 min (max)	Water Separability (Demulsification)	Not Specified
460 microns (max)	Lubricity	520 microns (max)
1.5 mg/100mL (max) 40 hour test	Storage Stability	2.5 mg/100mL (max) 16 hour test
0.1 wt% (max)	Sulfur Content	1.5 wt% (max)

Primary Qualification Requirement

Must be a drop-in replacement, invisible to the operator

- ✓ Meets fuel performance requirements
- ✓ Can be mixed or alternated with petroleum fuel

- ✓ Requires NO change to aircraft or ship
- ✓ Requires NO change to infrastructure

Not Changing the Fuel : Just The Source

Separate Qualifications For Naval Aviation And Ship Propulsion Fuels

-

5

JP-5 Qualification Protocol: Components, Full Scale and Platform Tests

System	Component Test	Full Scale Test	Platform Trial
Fuel Handling	Shipboard Fuel Test Equipment	Centrifical Purifier,	
		Filter-Coalescers	
Diesels	Injectors: EMD 645, PA-6B	EMD645, FME PA-6B	
Gas Turbines	Atomizers: Honeywell 131-9, 36-200, 85-129H, G250 Fuel Control: GE 414 Combustors: GE F414, RR AE3007	GE-414-400, RR-402-408, Honeywell GTCP 36-200	F/A-18 E/F, MV-22

F-76 Qualification Protocol: Components, Full Scale and Platform Tests

System	Component Test	Full Scale Test	Platform Trial
Fuel Handling	Shipboard Fuel Test Equipment	Centrifical Purifier,	Self Defense Test Ship
		Filter-Coalescers	(ex- Paul F. Foster (EDD 964))
Diesels	Injectors (Cat 3500, FME 38D 8-1/8, MTU396, Paxman-Valenta RP2000, Yanmar L)	Cummings QSB, CAT 3512B, MTU 396, FME 38D 8-1/8	Rigid Hull Inflatable Boat
Gas Turbines	Injector Atomizers, Combustor Rig (RR 501-34K)	RR 501-34 K	Self Defense Test Ship (ex- Paul F. Foster (EDD 964))
Boilers	Block Valves, Spray Plates		

Current Efforts/Plan Forward

JP-5

- Alcohol To Jet
 - Lab testing 95% Complete
 - Component/ Engine Testing In Process
 - Flight Tests Planned Summer 2014

• Direct Sugar To Hydrocarbon

- Lab testing 90% complete
- Similarity analysis on-going to determine component/engine req'ts

Hydroprocessed Depolymerized Cellulosic

- Lab testing 70% complete
- F414 combustor test planned 2014
- Component/Engine testing planned 2015

Catalytic Hydrothermolysis

- Lab testing 60% complete
- Component/Engine testing planned 2015

F-76

- Direct Sugar To Hydrocarbons
 - Laboratory testing 95% Complete
 - Component /Engine Testing in Process
 - Platform trials planned 2014/15
- Hydroprocessed Depolymerized Cellulosic
 - Laboratory Testing 90% Complete
 - Component/Engine Testing in process
 - Platform trials planned 2015
- Catalytic Hydrothermolysis
 - Lab testing 60% complete
 - Component/Engine testing planned 2015

Summary

- Navy tactical fuels (JP-5 and F-76) have operational applications requiring spec requirements beyond those of commercial specifications
- Navy qualification protocols well defined but are living documents
- F-76 and JP-5 Fischer Tropsch and HEFA qualification testing successfully completed
 - JP-5 spec revised, F-76 spec revision close
- Navy aggressively moving to qualify promising candidates for both aviation and shipboard applications

Changing Paradigms

Tactical Advantage

Questions?

Energy Efficient

Culture & nges Behavior Changes

Diverse Energy Diverse Energy Resources

Existing Eleer