Advanced Biofuels USA: promoting the understanding, development and use of advanced biofuels around the world.

Call to Action for a Truly Sustainable Renewable Future
August 8, 2013 – 5:07 pm | No Comment

-Include high octane/high ethanol Regular Grade fuel in EPA Tier 3 regulations.
-Use a dedicated, self-reducing non-renewable carbon user fee to fund renewable energy R&D.
-Start an Apollo-type program to bring New Ideas to sustainable biofuel and …

Read the full story »
Business News/Analysis

Federal Legislation

Political news and views from Capitol Hill.

More Coming Events

Conferences and Events List in Addition to Coming Events Carousel (above)

Original Writing, Opinions Advanced Biofuels USA

Sustainability

Home » Japan, Process, R & D Focus, University/College Programs

New Solvent Contributes to Next-Generation Biofuel Production from Biomass

Submitted by on December 5, 2017 – 12:08 pmNo Comment

(Phys.Org/Kanazawa University)  Compared to first-generation biofuels produced from food crops, production of second-generation biofuels for daily use is an urgent issue. In this study, researchers developed a novel carboxylate-type liquid zwitterion as a solvent of biomass, which could dissolve cellulose with very low toxicity to microorganisms. Use of this novel solvent enables significant reduction of energy cost for ethanol production from non-food biomass. Thus, second-generation biofuel ethanol production is in sight of practical implementation.

Solvents needed for the production of second-generation biofuel ethanol are highly toxic to microorganisms. Complicated processes are necessary to remove such highly toxic solvents, such as washing with water, separation by centrifugation and compression.

In the present study, researchers of Kanazawa University, Japan, succeeded in reducing the toxicity to microorganisms by developing a novel solvent, a carboxylate-type liquid zwitterion for dissolving biomass cellulose (Figure 1). The EC50, the concentration of a substance that reduces the growth of Escherichia coli to 50 percent, was found to be 158 g/L for the newly developed carboxylate-type liquid zwitterion, whereas the EC50 of ionic liquid, one of the conventional solvents of cellulose, was 9 g/L. This indicates that the novel carboxylate-type liquid zwitterion shows 17-fold lower toxicity than the ionic liquid.  READ MORE  Abstract (Journal of the American Chemical Society)

Related Post

Tags: , , ,

Comments are closed.