Advanced Biofuels USA: promoting the understanding, development and use of advanced biofuels around the world.

Call to Action for a Truly Sustainable Renewable Future
August 8, 2013 – 5:07 pm | No Comment

-Include high octane/high ethanol Regular Grade fuel in EPA Tier 3 regulations.
-Use a dedicated, self-reducing non-renewable carbon user fee to fund renewable energy R&D.
-Start an Apollo-type program to bring New Ideas to sustainable biofuel and …

Read the full story »
Business News/Analysis

Federal Legislation

Political news and views from Capitol Hill.

More Coming Events

Conferences and Events List in Addition to Coming Events Carousel (above)

Original Writing, Opinions Advanced Biofuels USA

Sustainability

Home » China, Process, R & D Focus, Singapore, UK (United Kingdom), University/College Programs

Improving Electron Transfer in Enzymatic Biofuel Cells

Submitted by on June 12, 2018 – 2:41 pmNo Comment

by Bob Yirka (Phys.org)   A team of researchers with members from institutions in Singapore, China and the U.K. has found a way to improve electron transfer in enzymatic biofuel cells. In their paper published in the journal Nature Energy, they describe their technique and how well it works. Huajie Yin and Zhiyong Tang with Griffith University in Australia and the National Center for Nanoscience and Technology in China, offer a News & Views piece on the work done by the team in the same journal issue.

Currently, enzymatic biofuel  are inefficient, have a short lifespan and do not produce much power. These problems, the researchers note, are due to the difficulty in wiring enzymes and electrode surfaces. In this effort, they claim to have overcome some of that difficulty by combining two previously developed methods aimed at solving the problem. The first method involves connecting an enzyme to the surface of an electrode in such a way as to allow the electrons to tunnel between the two—it is called direct . The second method involves a mediator that is used help the transfer—it is called, quite naturally, mediated electron transfer.

The researchers combined the two approaches to take advantage of the benefits of each.  READ MORE  Abstract (Nature Energy)

Read more at: 

Tags: , , , ,

Comments are closed.