We are not accepting donations from people or companies in Florida due to unfair reporting requirements and fees not imposed by any other state.

Call to Action for a Truly Sustainable Renewable Future
August 8, 2013 – 5:07 pm | No Comment

-Include high octane/high ethanol Regular Grade fuel in EPA Tier 3 regulations.
-Use a dedicated, self-reducing non-renewable carbon user fee to fund renewable energy R&D.
-Start an Apollo-type program to bring New Ideas to sustainable biofuel and …

Read the full story »
Business News/Analysis

Federal Legislation

Political news and views from Capitol Hill.

More Coming Events

Conferences and Events List in Addition to Coming Events Carousel (above)

Original Writing, Opinions Advanced Biofuels USA

Sustainability

Home » Feedstocks, Netherlands, R & D Focus, Sustainability

Life-Cycle Analysis of Greenhouse Gas Emissions from Renewable Jet Fuel Production

Submitted by on August 11, 2017 – 2:25 pmNo Comment

by Sierk de Jong, Kay Antonissen, Ric Hoefnagels, Laura Lonza, Michael Wang, André Faaij and Martin Junginger (Biotechnology for Biofuels)  The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA).

Results
Fischer–Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86–104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77–80%) and sugarcane- (71–75%) and corn stover-based Alcohol-to-Jet (60–75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity).

Conclusions
Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products. READ MORE

Related Post

Tags: , , , , , , , , ,

Comments are closed.