We are not accepting donations from people or companies in Florida due to unfair reporting requirements and fees not imposed by any other state.

Call to Action for a Truly Sustainable Renewable Future
August 8, 2013 – 5:07 pm | No Comment

-Include high octane/high ethanol Regular Grade fuel in EPA Tier 3 regulations.

-Use a dedicated, self-reducing non-renewable carbon user fee to fund renewable energy R&D.

-Start an Apollo-type program to bring New Ideas to sustainable biofuel and …

Read the full story »
Business News/Analysis

Federal Legislation

Political news and views from Capitol Hill.

More Coming Events

Conferences and Events List in Addition to Coming Events Carousel (above)

Original Writing, Opinions Advanced Biofuels USA

Sustainability

Home » BioRefineries, Biorefinery Infrastructure, Chile, Feedstocks, Infrastructure, New York, Not Agriculture, Precursors/Biointermediates, Process, R & D Focus, Sustainability, University/College Programs

Cornell Engineers Transform Food Waste into Green Energy

Submitted by on June 14, 2017 – 12:04 pmNo Comment

by Blaine Friedlander (Cornell University)  In a classic tale of turning trash into treasure, two different processes soon may be the favored dynamic duo to turn food waste into green energy, according to a new Cornell-led study in the journal Bioresource Technology.

“Food waste should have a high value. We’re treating it as a resource, and we’re making marketable products out of it,” said lead author Roy Posmanik, a postdoctoral researcher. “Food waste is still carbon – a lot of carbon.”

The researchers show that by using hydrothermal liquefaction before anaerobic digestion, virtually all of the energy is extracted from the food waste. In hydrothermal liquefaction, the waste is basically pressure cooked to produce a crude bio-oil. That oil can be refined into biofuel.

The remaining food waste, which is in an aqueous state, is anaerobically digested by microbes within days. The microbes convert the waste into methane, which can be used to produce commercial amounts of electricity and heat.

“If you used just anaerobic digestion, you would wait weeks to turn the food waste into energy,” said Posmanik, who works in both the laboratories of co-authors Jeff Tester, professor of chemical and biochemical engineering, and Lars Angenent, professor of biological and environmental engineering. “The aqueous product from hydrothermal processing is much better for bugs in anaerobic digestion than using the raw biomass directly. Combining hydrothermal processing and anaerobic digestion is more efficient and faster. We’re talking about minutes in hydrothermal liquefaction and a few days in an anaerobic digester.”

...

If we don’t have to extract oil out of the ground to run cars or if we’re using anaerobic digestion to make green electricity, we’re enhancing energy and food security.”

The paper, “Coupling Hydrothermal Liquefaction and Anaerobic Digestion for Energy Valorization From Model Biomass Feedstocks,” was co-authored by Rodrigo A. Labatut, Pontifical Catholic University of Chile; Andrew H. Kim ’17; and former post-doctoral researcher Joseph G. Usack.   READ MORE

Related Post

Tags: , , , , , , , , , , , ,

Comments are closed.